| Login

Resource Library

Keyword
GO
Categories










Industries














1567 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Multi-Fidelity E-Motor Drive Solution
Presenters: Ulrich Marl, Key Account Manager for Electric Vehicle Motor-Feedback Systems, Lenord+Bauer & Andy Dyer, MBD Sr Technical Specialist, Altair


This presentation shows a modeling process to quantify the position/speed sensor (e.g, encoder) effects on an e-motor, and corresponding control system for a concept traction motor similar to the Nissan Leaf. The integrated solution of the e-drive is carried in Altair Activate as a system builder, using other Altair solutions e-motor solutions in FluxMotor and Flux to generate data for the e-motor itself, as well as the optimal current values for the Field-Oriented Contoller. The inverter is driven with efficient space vector pulse width modulation. The integrated solution also supports different levels of modeling fidelity for the system components, for example for the e-motor where either direct co-simulation with Flux for detailed finite element analysis or a reduced order model (ROM) using look-up tables. In this way, sensor design parameters can be evaluated within an accurate system of the e-drive to improve performance and efficiency.

Solving Challenges in Electric Motor Design
Presenter: Berker Bilgin, Assistant Professor of Engineering (ECE) at McMaster University and co-founder of Enedym Inc.


Electric motors in general, are made of certain parts, such as the stator, rotor, coils and magnets, and mechanical parts. These parts might look simple and bulky from the outside, however, the highly interrelated relationship between the geometry of these parts, characteristics of materials, and the way the current is controlled, defines the cost, size, efficiency, performance, and lifetime of the motor. In electric motor design, multidisciplinary aspects are highly interrelated. The effect of various parameters on the electromagnetic, thermal, and structural performance should be investigated together to come up with an optimized design. This is possible by developing the platforms where the multidisciplinary aspects are modeled in a software environment, as we are doing with Altair software.

Altair MBD: Celebrating Accomplishments, What's Next
Presenter: Michael Hoffmann, Sr Vice President of Math & Systems, Altair


In this presentation, Michael Hoffmann, Sr Vice President, shares the company’s vision & strategy for Altair’s Math & Systems tools for Model-Based Development – based on providing an open platform tightly connecting 0D to 1D to 3D modeling & simulation. At different stages of their product development cycles, engineers can model and simulate their increasingly complex products as multi-disciplinary systems by using equations, block diagrams, and/or 3D CAD geometry.
His scope includes Altair Compose™, Altair Activate™, Altair Embed™, and Altair MotionSolve™ as well as the multi-body motion capabilities in Altair Inspire™. He also spotlights several recent success stories about customers who have used these technologies to drive innovation through simulation.

The Wahoo KICKR Bike: Designing a Ride Experience that Blurs the Line Between Virtual and Reality
As more products enter the market that simulate real world experiences, consumers' expectations are rapidly increasing. To meet these rising expectations the hardware and controls required are becoming more complex while maintaining time to market and cost. To achieve this, efficiencies are required in the control’s development and hardware tools chains. Wahoo Fitness and Altair collaborated to create the new Wahoo KICKR Bike utilizing a Model-Based Design approach to controls development combined with a simulation driven design process to meet the high expectations of the bike trainer community.

Experience the Sound of Your Future EV Before it is Built
Achieving the targeted brand image in a short development cycle time with minimal or zero prototypes is a major challenge faced by EV companies. To overcome this challenge, Altair, HBK and Romax have jointly developed a simulation driven process coupled with capabilities to virtually experience the noise and vibration characteristics, giving engineers a way to obtain real time performance feedbacks as the vehicle is being developed.

This joint presentation on the proposed NVH development process covers a wide range of topics, including benchmarking, target setting, full vehicle and motor gearbox simulation loadcases, troubleshooting, optimization and stochastic analysis, and playback of simulation results for subjective evaluations, with a number of new technologies representing the global best practice in sound and vibration design and development. Join us to explore ways to control the sound and vibration characteristics of the vehicle, achieve the right sound, and avoid common NVH pitfalls, while accelerating time to market utilizing and experiencing virtual NVH prototypes.

Vehicle Concept Design using Ride & Comfort Requirements for Truck & Trailer System Dynamics
Presenter: Kaustubh Deshpande, Chassis Engineer, Nikola Motor Company


This presentation describes Nikola Motor’s progression of design maturity from 1D CAE to 3D CAD/CAE for chassis system engineering work on their electric trucks. This progression spans from Voice of Customer to Functional Requirements to Functional Deployment to Structural Deployment.

Nikola Motor starts with a ‘First Principles’ model of their truck/trailer vehicle dynamics, then they perform system modeling & simulation with Altair Activate using quarter- and half-truck/trailer models. Block diagrams are created using both signal-based blocks and physical-based blocks (with Modelica).

Through this methodical process, Nikola Motor is able to derive more and better insight earlier in their development process regarding important vehicle characteristics for their trucks – ranging from ‘yaw rate of the tractor for loaded vs. unloaded trailer’ to ‘full-trailer load distribution sensitivity due to fifth wheel location’.

Work is in-progress to tighten the connection between their 1D CAE simulations in Altair Activate™ and their 3D CAE multi-body dynamics simulations.



Heavy Equipment Simulations: Multi-body, Hydraulics & DEM
Presenter: Ronald Kett, Technical Specialist, Altair


For a Stewart-Gough-Platform (Hexapod), various software tools were used to study and design highly dynamic hydraulic drives together with an overall system control. Calculation of Eigenfrequencies, control design and comparison, hydraulic system design, and overall simulation control were done in Altair Activate, the mechanics of the Stewart-Gough-Platform was taken from a CAD model into Altair Inspire Motion. The co-simulation between control + hydraulics and mechanics was performed using Activate and Altair MotionSolve. Altair HyperView and HyperGraph were used to analyze and visualize the results.

With the highly integrated solutions, the results could be achieved within a very short time. The different types of models (linear/simplified/full mechanics/hydraulics) made it possible to start with fast development cycles and finally achieve reliable results.


Real-Time Simulator of a Mobile Crane
Presenter: Arnold Free, Chief Innovation Officer and Co-Founder, CM Labs

Mechatronic systems and off-highway equipment design is rapidly evolving. With advanced control features, operator-assistance systems, and even full autonomy on the horizon, engineers are building complex systems simulation models to better understand their smart machines. Through the use of interactive and immersive VR software, systems models can be derived from high-fidelity engineering simulations and used for operator-in-the-loop, HIL, and SIL testing. Interactive virtual prototypes allow for human-factors test and measuring system performance in hyper-realistic virtual worksites. Simulation is also being used for AI based perception and motion planning in autonomous systems. Sales and marketing departments are now using interactive simulations and visualization to demonstrate products. The value of simulation is expanding rapidly in OEMs. CM Labs Simulations has recently partnered with Altair to bring together engineering simulation and interactive real-time systems models to perform all of the above. Validated multibody systems dynamics models from Altair MotionSolve can be used to build interactive models in Vortex Studio and combined with advanced real-time 3d graphics to create immersive live simulations with human interaction. With real-time simulation, it is also possible to connect to interactive control models and system level multidisciplinary simulations with Altair Activate. The presentation uses a mobile crane model as an example. It will demonstrate the process of translating the engineering models to real-time, creating realistic working scenarios and deploying in immersive simulators for operator in-the-loop testing and system demonstration.

Quadcopters: From System Modeling to Real-Time Simulator
Presenter: John Straetmans, Computer Engineering Student, University of Michigan

This project attempts to build an accurate real-time (RT) drone simulator through the full integration of a 1D functional model of a drone created in Altair Activate®, along with its corresponding geometry, into Unreal Engine via the Functional Mock-up Interface (FMI) standard. Then, VR, peripheral controllers, and other functionalities were added to the representation. This task was accomplished by modifying the Altair RT Vehicle Package, making it able to handle not just vehicles, but any system model located in an FMU for co-simulation, in this case a quadcopter model. Once the FMU containing the Altair Activate® drone model was successfully loaded into Unreal Engine, the tools provided by the application allow additional features to be added, such as VR support. By implementing an FMU, together with its geometry, into Unreal Engine, we can visually analyze the dynamics of the system to further verify the drone model and its performance. In the future, this integration process should be facilitated to automatically load any FMU following just a few steps.

Modelica Library for Real-Time Car Simulator
Presenter: Dario Mangoni, Engineering Professor, University of Parma


In the modern car industry, the advent of hybrid and electric vehicle systems is driving radical changes in the car electronics and software, demanding more and more advanced controlling techniques. Self-stopping, self-starting, ultimately self-driving cars are nowadays possible, because of the multitude of sensors, controller units and actuators making the vehicles “smart”. To simplify and make the interaction between the user and the machine more and more intuitive and user-friendly, a much broader and deeper investigation of different use scenario combined with the human interaction and intervention is critical. In this context, higher-detailed vehicle models are required to provide a valid prototyping tool which can be reliably used to test innovative controlling strategies, such as testing with the Man-In-the-Loop.

The Car Real-Time Modelica library proposed here aims at providing a highly valuable tool for the vehicle control system design and test. The key competitive advantages in this approach are in the Maple model-based compiler for supporting high-level of details modeling; the adoption of the Modelica language which allows a transparent and physical approach to the modeling activities and finally the Activate platform which offers real-time capabilities within an environment meant for the signal-based control design. To graphically validate the library results, a visualization framework for realistic real-time simulations that assures high-fidelity scenario in which to test user experience was also realized.

Multi-body Enhancements & Customer Successes
Presenter: Rajiv Rampalli, Sr VP in HyperWorks Core Development team, Altair


Altair’s products for multi-body system simulation (MBS) – MotionView, MotionSolve, and Inspire Motion – form a key component of multi-disciplinary system simulations. In this presentation, we will look back on several achievements this year, in the form of customer successes as well as recent enhancements to these products which significantly extend the depth and breadth of capabilities.

Some of these application examples also involve connections from MBS to other Altair technology or to 3rd-party technology such as to Altair OptiStruct (for flexible bodies and light-weighting) and Altair Activate (for hydraulics) and EDEM (for discrete element modeling of bulk materials).


System Simulation for HVAC
Presenter: Christian Kehrer, Altair [on behalf of Oliver Höfert, Simulation Engineer at Kampmann]


The increasing virtualization of engineering methods is inevitable. This also holds true for the design of systems that take care for the thermal well-being of humans, e.g. in buildings. If it comes to simulation of so-called HVAC (heating, ventilation, air conditioning) systems, very often high fidelity approaches like CFD are connected to it. In contrary, this contribution illustrates a 1D modeling approach of a heat exchanger in use of Altair Activate.

The presentation explains the implementation of the NTU (Number of Transfer Units) method in a system simulation environment. This includes a short description of the approach itself as well as its current limits. Based on the implementation of a single cell, differing network configurations for the evaluation of use cases of varying complexity will be shown.

ROMs For Battery Cooling Systems
Presenter: Stefano Benanti, R&D materials engineer, Hutchinson


Battery cooling (BC) systems are frequently composed of several parallel branches, each leading to and away from a series of cooling plates. As a correct flow distribution in each branch and overall pressure drop are a key requirement from every customer, numerical computation is extremely important from the first stages of each project: the number of components and their dimensions have a relevant impact on the total cost and it is thus necessary to quickly provide results already in the Request for Quotation (RFQ) phase.The 3D computation of such cases, albeit feasible, takes a relevant amount of time and makes it more costly (both in terms of computational power and of necessary software licenses) to quickly provide results. The goal is then to develop a quicker method to provide results and allow for the necessary optimization cycles.

Altair Activate® was chosen by Hutchinson to develop a library of ROMs representing different circuit components through which is possible to create 1D models able to respond quickly and precisely to such demands.

Integrated Systems Simulation from Requirements
Ed Wettlaufer, Technical Manager Mechatronics Group, Altair [on behalf of NAVAIR]


Government solicitations for proposals, or RFPs, for aircraft and airborne systems require preliminary designs with enough fidelity to accurately predict performance, in order to prove the design's ability to meet the Governments performance requirements. Modern high-performance computing provides the leverage to execute previously expensive analyses in areas such as computational fluid dynamics. The results of these high order analyses can be used to populate parameters in 1D systems models which can be easily coupled to medium order models from other disciplines. These capabilities allow the design engineer to rapidly iterate to levels of model maturity and accuracy not achievable years ago, resulting in high levels of confidence in the designs performance predictions in unprecedented time.

Moving forward, Altair engineers will employ Multiphysics and co-simulation to execute the Engineering and Manufacturing Development phase (EMD) for one subsystem of the preliminary design developed in the afore mentioned pre-acquisition phase.

eBook: Learn Casting and Solidification with Altair Inspire Cast
This eBook is aimed at helping those engineers, foundrymen, and researchers to help gain knowledge in a short period of time and focus on obtaining a practical understanding of the software, basic knowledge of casting techniques and simulations as opposed to real-life experimentation.



eBook: Simulation-Driven Design with Altair Inspire
Inspire, the industry's most powerful and easy-to-use Generative Design/Topology Optimization and rapid simulation solution for design engineers empowers its users by creating and investigating structurally efficient concepts quickly and easily.

Practical Aspects of Multi-Body Simulation with HyperWorks
This book intends to serve as a guide helping you to get started with Multi Body Dynamics Simulation (MBD). It is more a quick reference to learn some of the basics – we deliberately refrain from theoretical discussions and too much math.

eBook: Introduction into Fit Approximations with Altair HyperStudy
A first eBook on DOE with HyperStudy has been released in the beginning of 2017. We hope you have appreciated it and learned useful knowledge helping you to improve your studies.

eBook: Design of Experiments with HyperStudy – A Study Guide
The objective of this eBook is to demonstrate how to use Altair HyperStudy to perform Design of Experiments (DOE), i.e. how to identify critical design variables and their contribution to the design performance.

eBook: Introduction to Explicit Analysis using Radioss – A Study Guide
This study guide aims to provide a basic introduction into the exciting and challenging world of explicit Finite Element Analysis.

eBook: Learn Dynamic Analysis with Altair OptiStruct
This study guide aims to provide a fundamental to advanced approach into the exciting and challenging world of Structural Analysis.

eBook: Introduction to Nonlinear Finite Element Analysis using OptiStruct
This study guide aims to provide a fundamental to advanced approach into the exciting and challenging world of Nonlinear Analysis.

eBook: Learn Thermal Analysis with Altair OptiStruct
Examples in the eBook – Learn Thermal Analysis with Altair OptiStruct

eBook: Learning Fatigue Analysis with Altair OptiStruct
The focus of this study guide is on Fatigue Analysis. As with our other eBooks we have deliberately kept the theoretical aspects as short as possible.

eBook: Learn Aerodynamic Analysis of Automobiles with Altair ultraFluidX
Altair ultraFluidX is an environment for doing External Aerodynamic CFD analysis using the Lattice Boltzmann Method (LBM) technique.

eBook: Learn Electromagnetic Simulation with Altair Feko
Altair Feko is an environment to solve electromagnetic problems. This book takes the reader through the basics of broad spectrum of EM problems, including antennas, the placement of antennas on electrically large structures, microstrip circuits, RF components, the calculation of scattering as well as the investigation of electromagnetic compatibility (EMC).

eBook: Flux2D Simulation of the Rotor Bar Breakage
This book is a step by step introduction in the building of finite element models using Altair Flux Student Edition 2018.1.2 for a squirrel cage bar breakage process and broken bar faults in an induction motor.

Advanced Hystheresis Simulation Using Preisach Model - Altair Flux
Newly introduced in Altair Flux, the hysteresis modeling based on Preisach's model enables a better evaluation of iron losses and remanence effects. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.


Taking Demagnetization Into Account - Altair Flux
Demagnetization simulation: considering the magnet demagnetization phenomena during the solving process simulation enables very accurate predict the device performance, and measure the impact on EMF and torque for instance. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Advanced e-Motor Design Dedicated Environment - Altair Flux FeMT
Designing an e-Motor has never been a simple task. Altair Flux, the solution for accurate electromagnetic detailed design, not only enables to quickly generate 2D and 3D motor models with its Overlays. Its new module now produces efficiency maps and automatic reports in the same appreciated FluxMotor supportive environment. Flux captures the complexity of electric motors and electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Optimizing a Solar Car for Endurance and Energy Efficiency
Using Altair simulation software, Gurit supports Western Sydney University's Bridgestone World Solar Challenge team, helping them design the most efficient and aerodynamic
car possible, while ensuring driver safety
and adhering to class rules.

Conductor Impedance and Near Field Simulation using Altair Flux
Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux PEEC is a dedicated environment to electrical interconnection modeling for EMC and power electronics applications, from small wire bonds and PCB tracks, up to busbars, power modules and large distribution switchboards. Flux PEEC evaluates parasitic inductances and capacitances, analyse the current distributions and resonances, including skin, proximity and capacitive effects and computation of Joule losses, radiated magnetic fields and Laplace forces.


New Features of Altair Flux Electromagnetic and Thermal Simulations
Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
Designers starting with a blank page face an unlimited number of configurations and need to quickly select machines types. By coupling Altair FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage, defining their constraints and their objectives. A typical objective is to reach maximum global efficiency across a given duty cycle. Then, designers can select and focus on the topologies that fulfill the main specifications before going further in their design.

Model Export to Altair Flux
Once a designers has defined its motor concept in Altair FluxMotor and evaluated its global performance, he can perform more detailed analysis, exporting his machine in Altair Flux and working with high-fidelity models. Significantly, Flux enables more accurate prediction of motor behavior, with advanced losses computation, considering eccentricities, magnet demagnetization, effects of manufacturing process, and couple to Altair HyperWorks for multiphysics analysis.

e-Motors Comparison and Ranking with Altair FluxMotor
Quickly design and optimize concept machines while offering efficient comparison capabilities, Altair FluxMotor enables designers to make informed early strategic choices to select the most appropriate topologies.

eBook: Practical Aspects of Structural Optimization
This study guide aims to provide a basic introduction in the different optimization methods. Designed for users who are interested to learn more about the “inspiring” world of optimization.

Five Common Mistakes made Running Topology Optimization
Topology optimization is an approach that optimizes the material distribution within a given design space, for a given set of loads and boundary conditions, to meet a set of performance targets. Using topology optimization at a concept level can help you achieve the best performing design while saving time by replacing costly design iterations.

SimSolid Drives Down Analysis Time at Don-Bur
Truck trailer manufacturer, Don-Bur, discuss the challenges its engineering team was having with simulation in SolidWorks, and how a move to SimSolid has cut its simulation time from hours to a just few minutes.

Magneto Vibro Acoustic Design of PWM Fed Induction Machines
Induction Motors (IM) are widely used in various industries. To ensure their speed control, IM will be supplied with pulse width modulation (PWM). This kind of supply, can impact efficiency of the motor and degrade its vibro-acoustic behavior, generating noise nuisance. To tackle these technical challenges and ensure best-in class acoustic comfort for users, it is necessary to design a quiet e-motors at the early stage of design.
The first aim of this paper is to show a new method to reduce noise and vibration due to PWM supply of induction machine. The proposed approach allows the passive reduction of air-gap flux density harmonics in an induction machine. The second interest, is to show a new method to analyze the vibro-acoustic behavior of a PWM-fed IM. The method is fully finite element (FE) computation. Finally, the third interest of this article, is to compare noise and vibration results between the proposed FE method, magneto-vibro-acoustic coupling and measurements. Good agreement between measurements and computation will be shown.


Optimizing CAE Data Preparation Processes Using CADdoctor
As the use of 3D data throughout the produce lifecycle broadens, it is ever more essential to prepare high-quality 3D CAD geometry models to streamline the entire simulation process. CADdoctor is a tool to streamline CAD geometry preparation to make the data suitable for the HyperMesh simulation process. This helps to achieve reducing your simulation lead time and improving the accuracy of the simulation result. This presentation will be an introduction to one of the leading software on the Altair Partner Alliance and how this software has been benefitting users throughout the globe.

  •  
Unit Delay, Pulse Counter, and Discrete Integrator
Use of the Unit Delay, modeling a pulse counter, and modeling a discrete backwards rectangular integrator.


Discrete Reset Integrator, Merge, & CrossDetect Blocks
Understanding the Merge and CrossDetect blocks, adding an Embed model to the Embed MenuBar, modeling a discrete reset integrator.


Fixed Point - Fundamentals Part 1
Description and use of fixed point blocksets, block properties, blockset configuration tool and displaying fixed point overflow messages and watermarks.


Fixed Point - Fundamentals Part 2
Application of fixed point autoscale feature and attributes of automatically generated fixed point C-code


Fixed Point - Filters
Use of the transfer function block and filter design option to design, discretize and implement a second order low pass filter. Adjusting the discrete stepsize and fixed point format for acceptable performance are covered.


Drivers...Start Your Simulation? University of Texas – Arlington uses Altair SimLab™ and Altair Optistruct™ to design an adjustable pedal box for their Formula SAE racecar
Formula SAE is a collegiate design series run by Society of Automotive Engineers (SAE), which challenges students to design, build and compete with an open wheel style car across various events. The competition pitches various teams across different static events focusing on the teams engineering design decisions, cost planning, marketing strategies and vehicle inspections. The teams also have to compete under various dynamic events like acceleration, skid-pad, autocross and the endurance run where even the fuel economy is checked.

OptiStruct – Nonlinear Axisymmetric Analysis
Nonlinear axisymmetric analysis with OptiStruct.


Product: OptiStruct
Product Version: OptiStruct 2019.0 or above

Topic Objective
Nonlinear axisymmetric analysis with OptiStruct.

Topic Detail
Analyzing a symmetrical portion of a structure means faster processing than if you modeled the whole structure.Axisymmetric CTAXI with 3 and 6 node tria-elements, where always available for linear analysis. From 2019.0 we support axisymmetric quad-elements with 4 or 8 nodes.

Axisymmetric Elements
Axisymmetric are available for tria & quad elements for both
  • 1st order
  • 2nd order

    For linear analysis, & nonlinear static analysis
    • Small displacement
    • Large displacement


    Contact support for Axisymmetric elements (Supported from V 2019.1)
    • N2S and S2S CONTACT and TIE are supported for axisymmetric modeling.
    • Currently, contact for axisymmetry is supported only for small sliding.
    • The Contact Smoothing option is also not supported.


    Axisymmetric are not supported yet for:
    • Inertia relief analysis in LGDISP nonlinear analysis
    • Hyper-elastic materials
    • Optimization with non-linear








  • Controlling LEDs - Basics
    Blink the red LED on a Texas Instruments F28069M LaunchPad board at 0.5Hz. The model is expanded to blink the red and blue LEDs alternately at 0.5 Hz and then at 10Hz.


    Controlling LEDs - Frequency Controlled
    Example of host-to-target communication to blink the red LED on the target Texas Instrument F28069M LaunchPad Development Kit using an Embed slider block.


    Controlling LEDs - Frequency Controlled With "On Time" Measurement
    Host-to/from-target communication to blink the red LED on the Target Texas Instrument F28069M LaunchPad Development Kit


    Compound Blocks - Basics
    Create compound blocks to add levels to your model; navigate through your model; add/remove compound block connector pins; use compound block dialog constants and dialog windows; access and use built in variables


    Compound Blocks - Advanced
    Discussion of two compound block features; Enabled Execution and Local Time Step. Additionally, the Local Time Step feature is applied to implement the block diagram equivalent of a "For" loop to iteratively solve a nonlinear implicit equation.


    Oscilloscope Display Using Monitor Buffer
    High speed data collection using the EMBED Monitor Buffer Read and Write blocks, using the plot block to display Monitor Buffer data, displaying the % CPU usage using the Target Interface Block, and controlling the Target update time.


    Plot & Buffer blocks
    Creating vectors using the Embed “buffer” block, and configuring and using the “plot” block to display “buffer” data.


    Digital Power Buck Converter Control
    Voltage Mode Control


    Texas Instruments CCS Software Installation
    Step by Step instructions to install the Texas Instruments Code Composer Studio and Uniflash software on your computer.


    Furuta Inverted Pendulum Control
    Apply the Model -Based Development process to the design, test, and HIL testing of a swing up and balance controller for the Furuta inverted rotary pendulum.


    Add a Model to the Embed Menubar
    A binary hysteresis model is developed and simulated. The model is added to the Embed Menubar under a new menu named MyModels.


    Encoders
    Configure and read a US Digital S4T 4 wire quadrature incremental encoder connected to a Texas Instrument F28069M LaunchPad board.


    Altair Inspire – Mesh Control
    How to use the mesh control option in Altair Inspire.


    Product: Altair Inspire

    Product Version: Altair Inspire 2018.1 or above

    Topic Objective
    Mesh control option in Altair Inspire.

    Topic Details
    Mesh controls have been added to assign an element size to parts or faces. This option would help to assign a smaller element size near critical location.

    The element size dictates the quality of your analysis or optimization results. In general, the smaller the element size, the more accurate the result.



    Simulation-Driven Design of Sheet-Metal Components
    A good Design is not complete unless it meets desired performance and qualifies for efficient manufacturing. Design of sheet-metal components demand the following, From a Design perspective - if sheet-metal can be used for intended design, their sizing & shape, choice of material, weight and cost.
    From Manufacturability perspective - manufacturing feasibility of the designed shape, allowable thinning and wrinkling limits, addressing process constrains and importantly forming feasibility.


    Leveraging Simulation to drive the design as it unfolds at the concept generation stage, helps design engineers to accrue downstream benefits upfront.

    •  
    Improving Performance Using FEKO and HyperStudy at Northrop Grumman
    Scott Burnside, Senior Antenna & RF Engineer at Northrop Grumman, explains how Altair Feko and HyperStudy can be combined to design and optimize antennas for land vehicles, helicopters, and aircrafts.

    OptiStruct – Mode Tracking and Rotor Energy from Complex Eigen Value Analysis
    OptiStruct – Mode Tracking and Rotor Energy from Complex Eigen Value Analysis


    Product: OptiStruct

    Product Version: OptiStruct 2019.0 or above

    Topic Objective
    Mode tracking and rotor energy from complex eigen value analysis with OptiStruct.

    Topic Detail
    Mode Tracking is now available for rotor dynamics with complex eigenvalue analysis
    • It is mapping the mode-shapes of a system from one state to another.
    • Tracking is carried out using various methods shown in the below bulk card.
    • Assumption is that the two states are close for eigenvectors to retain orthogonality across states.
    • Mode-tracking in rotor dynamics tracks modes across rotor speeds and yields a much better Campbell diagram, as shown below.



    OptiStruct – Key Performance Indicator Output
    OptiStruct – Key Performance Indicator Output



    Product Version: OptiStruct 2018.0 or above

    Topic Objective
    Key performance indicator output in OptiStruct.

    Topic Detail
    KPI (Key Performance Indicator)
    • OUTPUT,KPI or DISP(KPI) .kpi ascii file is output
    • Currently supported for linear and nonlinear static analysis
    • Max value for displacement/stress/strain/plastic strain based on groups by property
    • Stresses and strains are supported for shells and solids

    KPI output filtered for user specified property (Available with V 2019.1)
    • KPI output is limited to the grids/elements within the output sets. Set of property could be used to request the KPI output only for a list of properties.

    Analysis Page: Control card: OUTPUT: KPI



    OptiStruct – Section Force Output from Pretension Bolt
    OptiStruct – Section Force Output from Pretension Bolt


    Product Version: OptiStruct 2019.0 or above
    Topic Objective
    Section force output from pretension bolt in OptiStruct.
    Topic Detail
    Section force output from pretension bolt
    • No need to define SECTION manually
    • Solids
    • Automatic output of SECTION results with solid pretension bolt
    • Out file as well as .secres file

    Example:



    Digital Power - Simulation Blockset overview
    Brief overview of the simulation blockset of the Digital Power Designer. In this video we look into and analyze a selection of bocks used for simulation (Compensators, PWM simulation, Voltage Mode Control simulation, Buck Converter).


    Digital Power - Coefficient Conversion
    Select/tune the coefficients of a PID compensator. Users can calculate the digital coefficients from the analog component values or can tune the coefficients on the fly.


    Digital Power - Model Based Frequency Response Analysis
    Details of the new block of the Digital Power Designer which lets user do a frequency response analysis.


    Buck Converters - Simulation
    Simulation of the control system in order to analyze the response of the buck converter in voltage mode control. The microcontroller peripherals which are needed are simulated using the peripheral simulation blocks of the Digital Power Designer.


    Buck Converters - Compensator Coefficient Tuning
    The buck converter is simulated with the coeffiecients of the compensator being the inputs. This gives us the opportunity to better tune the coefficients based on the response of the converter.


    Buck Converters - Open Loop
    We take the first step to control the actual converter. We run a hardware in the loop diagram in open loop.


    Buck Converters - Closed Loop Model Design and Compilation
    We look into the design of the model for closed loop control of the buck converter and look into the compilation of the model with just 3 clicks.


    Buck Converters - Closed Loop Debugging (HIL) and Flashing
    Last part is running the closed loop control algorithm in hardware in the loop for validation. After validation we can revert to the design diagram and in just one step create a binary file that can be flashed to the controller.


    PMSM - Overview
    Introduction of Prof. Duco Pulle and overview of the Permanent Magnet Synchronous Motor (PMSM) lab examples


    PMSM - Open Loop Voltage Control Simulation
    Short introduction to the theory of open loop voltage control of a PMSM


    PMSM - Open Loop Voltage Control HIL
    Hardware Used: TI LaunchXL-F28069M, BoostXL-DRV8301, Teknic M2310


    PMSM - Open Loop Current Control HIL
    Hardware Used: TI LaunchXL-F28069M, BoostXL-DRV8301, Teknic M2310


    PMSM - Field Oriented Control Simulation
    Short introduction to the theory of closed loop field oriented control of a PMSM


    PMSM - Field Oriented Control HIL
    Hardware Used: TI LaunchXL-F28069M, BoostXL-DRV8301, Teknic M2310


    PMSM - Sensorless Field Oriented Control HIL
    Employing TI's FAST (Flux, Angle, Speed, and Torque) observer


    PMSM - Motor Identification for InstaSPIN FOC
    InstaSPIN: Motor Control solution from Texas Instruments.


    Lead-Time Reduction at Renault with Altair SimSolid
    Renault presented on their use of Altair SimSolid at the HyperWorks 2019 Roadshow in France. They showed a reduction in lead time from weeks to hours with results accuracy within 5% of their standard processes.

    Altair Embed Arduino - Dimming an LED in less than one minute
    Introduction to pulse width modulation (PWM) and its use for dimming an LED


    Altair Embed Arduino - Dimming an LED
    Introduction to PWM and its use for dimming an LED


    Altair Embed Arduino - Push Button Control
    Introduction to State Charts


    Altair Embed Arduino - Control the color of an LED using Potentiometers
    Hardware used: 3x 10kΩ Potentiometers 4x 220Ω Resistors 1x RGB LED 1x Arduino 1x Breadboard


    Altair Embed Arduino - Algorithm Validation using the Serial UART
    Validating the algorithm for controlling the color of an LED


    Altair Embed DC Motor Current Control
    Prof. Duco Pulle introduces current control of a DC Motor using a Linear Actuator


    Altair Embed Drone Control - Theory
    Prof. Duco Pulle takes us through the theory of controlling a drone DC motor


    Altair Embed Drone Control - HIL Setup
    Prof. Duco Pulle explains and sets up the diagram for Hardware in the Loop control of a drone DC motor


    Drone Control - HIL Run
    Prof. Duco Pulle controls a drone DC motor in an HIL diagram


    Salient PM Motor - Theory
    Prof. Duco Pulle takes us through the theory of controlling a salient PM motor


    Salient PM Motor - Code Generation & HIL
    Prof. Duco Pulle shows code generation and Hardware in the Loop control of a salient PM motor


    Midsurfacing and Meshing in HyperWorks X
    A beam example of how the new Altair HyperWorks X workflows allow to quickly extract midsurfaces, generate a mesh and apply morphing.

    Hyperworks X: Morphing Examples on a Turbine Blade
    This brief demo shows the easy accessibility to morphing in HyperWorks X. Different examples are shown to explain, how to take advantage of Altair's morphing technology.

    Hyperworks X: Design Space Management
    Altair HyperWorks X introduces a very intuitive and powerful workflow to quickly generate design and non-design space for optimization runs. It also provides a library for automotive related non-design spaces, such as engine, seats, engine, sunroofs, and wheel arches. The results can be quickly altered with manipulators.

    Geometry Generation and Morphing in HyperWorks X
    Based on the example of a floor panel, this video shows how easy it is to generate new geometries and meshes in HyperWorks X. Some adjustments to the mesh are done with the morphing functionality. These mesh geometry changes are saved as shape, e.g. to use it for a subsequent optimization.

    Altair Activate DC-Motor
    A DC motor comprised of mechanical and electrical subsystems


    Page: 1   2  3   4   5   6   7   8   9   10   11   12   13   14   15   16  

    RSS icon Subscribe to RSS Feed

    Be The First To Know

    Subscribe