| Login

Resource Library

Keyword
GO
Categories










Industries














1627 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Flux Webinar: Efficient Solutions for EM Design Exploration and Optimization
In this webinar we will demonstrate how Altair HyperStudy, HyperWorks’s multi-disciplinary design exploration tool coupled to Flux can help engineers in the design of high-performance products and reduce cost and the development cycle.



Flux Webinar: Improving the Manufacturing Process with Efficient Induction Heating Applications
Heat Treatment is widely used in different industries in different manufacturing processes, such as heating, brazing, hardening, welding, sealing, etc. and in industries, such as food, energy or transportation.

In this webinar, we will show you how Flux simulations can efficiently help to design, analyze and optimize the heat treatment process and equipment.

Design Innovation for the Medical Industry
Altair helps medical companies across the world achieve product development objectives through its unique approach, which blends CAE simulation software, design creativity and in-depth engineering expertise to achieve optimal product designs.

Designing the Future of e-Mobility
Altair develops multiphysics simulation technologies that allows designers to
accelerate next generation mobility solutions development. From smart control
design, to powertrain electrification and vehicle architecture studies, our solutions
enable optimization throughout the development cycle.

Combining Near-Field Measurement and Simulation for EMC Radiation Analysis
Electronic components are required to comply with the global EMC regulations to ensure failure free operation. Currently, EMC
measurements in certified institutes are mandatory to certify performance complies with regulations.This paper describes a practical method of combining near-field measurements and simulations to explore the radiation behavior of
electronic components.

Nelson Mandela University: Designing a Winning Eco-Car
Martin Badenhorst, Masters Student at Nelson Mandela University, Port Elizabeth, South Africa, shares how he managed to reduce the weight of their eco-car by 20%.

Approaching Learning Differently at Nelson Mandela University in South Africa
Watch this short video to find out how the Faculty of Engineering is approaching teaching differently with the help of Altair's learning tools.

  •  
Flux Webinar: Sensor and Actuator Design for Transportation Applications
In this webinar we discuss and illustrate how electromagnetic simulating technology enables a flexible new alternative solution for electromagnetic transmission, with electromagnetic couplings replacing mechanical and differential couplers.

Design and Analysis of a Proximity Fuse Antenna for an Air Defence Missile
This white paper is an example of how Antenna Magus can be used to generate antennas for antenna placement studies in FEKO.

Metamaterials in FEKO
A description of how metamaterials may be modeled in FEKO followed by guidelines regarding the different simulation options.

FEKO Webinar: The Growing Role of EM Simulation for Connected Vehicles and e-Mobility
This webinar will show how FEKO and WinProp are used to solve design and validation challenges related to:

(a) Connected vehicles, including antenna integration aspects. The use of virtual drive tests to reduce the costs and time of extensive road tests being done to study and analyze new connected vehicle functions, and

(b) Wireless power transfer systems and electromagnetic compatibility aspects which are key on electric and hybrid vehicles

Bowtie Antenna
This paper illustrates that FEKO can be applied to the simulation of planar antennas with bowtie antennas as an example.

Conformal Multi-Band Patch Antenna
Simulating the Planar and Curved Antennas in FEKO

Two Arm Spiral Antenna
A two-arm self-complementary archimedean spiral antenna is modelled in FEKO to determine its wideband behaviour.

Modeling of a Magic Tee Waveguide Coupler
A short depiction of FEKO‘s waveguide capability with a magic T coupler as example.


Advanced Radar Cross Section (RCS) Visualization with POSTFEKO and Lua Scripting
This white paper demonstrates how Lua scripts in POSTFEKO may be used to produce advanced visualizations of RCS data that was
computed in FEKO.

A Thin, Low-Profile Antenna Using a Novel High Impedance Ground Plane
The size of the antenna for a given application does not depend purely on the technology but on the laws of physics where the antenna size
with respect to the wavelength has the predominant influence on the radiation characteristics.

Horn-Fed Reflector Antenna
A horn-fed parabolic reflector is modeled in FEKO to determine its radiation pattern.

Cassegrain and Gregorian Reflector Antenna Modeling with MLFMM LE-PO Hybrid Solvers
This white paper demonstrates that the MLFMM-LE-PO hybrid formulation is a very efficient and accurate method for analysis of large
reflector antennas.

Microstrip Bandpass Filter
A microstrip bandpass filter is modeled in FEKO to determine its S-parameters.

Designing an LTE Base Station Antenna with the Finite Arrays Method
This white paper demonstrates how an LTE base station antenna may be modeled with the finite arrays (DGFM) method in FEKO.

Modeling & Analysis of Anechoic Chambers
A white paper demonstrating how FEKO models were used during the design stages of an anechoic chamber that operates in UHF ranges.

MRI Birdcage Coil Design
An application note on the modelling of a 7T MRI birdcage headcoil in FEKO.

Probe-Fed Stacked Annular Ring Antenna
This example illustrates how a probe fed stacked annular ring antenna may be simulated in FEKO.

Radar Cross Section (RCS) Measurement and Simulation of Generic Simple Shapes
RCS targets including the NASA almond, ogive, double-ogive, cone-sphere and cone-sphere with gap were constructed and the RCS was simulated. Simulation data is compared to measured data in open literature.

Cable Harness EMC/EMI: Cross Talk, Radiation, Interference & Susceptibility
Bundles of electrical cables in vehicles, aircraft, ships and buildings pose electromagnetic compatibility and interference challenges to the
electrical design engineer. Due to their lengths, they are more likely to radiate or pick up irradiation than many other electrical components
and systems. Through several examples, this white paper will discuss how those challenges can be met with the aid of electromagnetic
simulation.

Radar Cross Section of Aircraft with Engine Inlets
At radar frequencies, 1GHz and above, asymptotic methods are usually preferred to calculate the radar cross section (RCS) of targets like aircraft, since the main parts of the target are more than an order of magnitude larger than the wavelength. The challenge is how to combine these methods to compute the RCS. In this white paper the two-step method that obtains accurate results in limited time is detailed.

Overcoming Challenges in 5G Antenna Design, Radio Coverage & Channel Analysis with FEKO & WinProp
This webinar will show how FEKO and WinProp can be used for the 5G antenna design, analysis of radio coverage and channel statistics including the antenna effect. This allows the requirements to be derived for the 5G antennas, as well as strategies for the 5G network deployment, including the 3.5 GHz frequency bands for area-wide high data rate services and the 26-28 GHz bands for capacity hotspots.

Key Benefits of Combining Measurements with Simulations for Antenna & EMC Applications
Altair has been working with Microwave Vision Group (MVG) for many years on the combination of measurements done with MVG antenna measuring systems with FEKO simulations. This webinar will explain how such a combination represents an alternative solution for antenna manufacturers to share data with device and platform manufacturers without exposing their IP.

Flux Webinar: Green Taxiing Application
Understand FEM design concepts behind building a Green Taxiing System and other similar electromechanical devices to help airlines save on fuel costs and cut C02 emissions.

Flux Starter Motor Design - Generator
Watch this recorded webinar to learn how Flux can help with designing Starter Motors.

Flux Webinar: Design of Electromagnetic Actuators with Flux & Optimization
During this 30 minute on-demand webinar discover how actuators are replacing standard hydraulic motors and how to optimize your design.



Antenna Design Methodology for Smartwatch Applications
Smart devices have touched and enhanced all aspects of our lives, from the way we conduct business to the way we relax at the end of the day. Designing antennas for wearble devices presents a unique set of challenges. In this technical article from Microwave Journal, these issues are discussed.

FEKO Student Competition Winner 2016 Webinar: Embedded Element Pattern Beam Model for Murchison Widefield Array
Daniel Ung's entry was selected as the winner of the 2016 FEKO Student Competition.

A precursor to the Square Kilometre Array (SKA), the Murchison Widefield Array (MWA) radio telescope was constructed in the Murchison Radio-Astronomy Observatory in Western Australia.

In this one-hour webinar Daniel presented his report detailing how he made use of FEKO.



FEKO Webinar: Design Optimization with FEKO & HyperStudy
Solving complex design problems with an approach based on intuition can be challenging, especially when multiple design parameters interact with one another and several design goals are targeted. Join us for this webinar in which we will present a brief summary of different optimization methods, together with workflow demonstrations to set up a design.



FEKO Webinar: Efficient Antenna Array Modelling
FEKO contains various techniques for the efficient modeling of antenna arrays during the design process. The application and advantages of techniques such as periodic boundary conditions (PBC), the domain Green's function method (DGFM) and equivalent sources for efficient array modeling are demonstrated in this webinar.


OptiStruct – Thickness change output for Large Displacement Nonlinear Analysis
OptiStruct – Thickness change output for Large Displacement Nonlinear Analysis



Product Version: OptiStruct 2019.0 or above

Topic Objective
Thickness change output for large displacement nonlinear analysis with OptiStruct.

Topic Detail
THICKNESS output has always been available for size or free-size optimization for shells and composites.It is now supported for shell elements in LGDISP analysis (NLSTAT & NLTRANS).It is very useful to visualize how much the ‘thickness’ of the shells are decreasing or increasing (specially in necking type applications).

Analysis Page: Control card: THICKNESS


Imagining a World that Works
To create products and processes that are well-adapted to life, innovators are turning to a new design discipline called biomimicry. Biomimicry consults nature for inspiration, design ideas, and standards. Life has been on Earth for 3.8 billion years—the same planetary conditions in which we are trying to build our homes, grow our food, make our materials, run our businesses. Life has already done everything we want to do, but at a lot less cost to the planet. Realizing this, scientists and designers are now consciously emulating life’s genius. Explore biomimicry as both a philosophy and a practical methodology with examples of groundbreaking innovations and their role in ensuring the success of a new industrial revolution that is greener and more sustainable over the long haul.

Altair SimSolid – Shortcut Keys
You can access many commonly used functions in SimSolid with keyboard shortcuts, which are generally faster and more efficient than using the toolbar

Introducing Altair HyperWorks Unlimited
Altair HyperWorks Unlimited packs the power of high-performance computing, unlimited CAE solver licenses and all the required resource management expertise into one easy package — so you can spend more time exploring, designing, and building your next innovation.

Transformative Flight Transportation
Advances in energy storage, motor efficiency, and flight control systems have us on the potential cusp of a revolution in air mobility. This comes at a time when many traditional transportation infrastructures are saturated and new modes of mobility are desperately needed.

Terrafugia highlights recent developments in urban- and extended-air-mobility, and the hurdles that must be overcome, not only technical obstacles but also challenges in regulations, societal acceptance, and business.

Imagining a World That Works - Biomimicry in Engineering
To create products and processes that are well-adapted to life, innovators are turning to a new design discipline called biomimicry. Biomimicry consults nature for inspiration, design ideas, and standards. Life has been on Earth for 3.8 billion years—the same planetary conditions in which we are trying to build our homes, grow our food, make our materials, run our businesses. Life has already done everything we want to do, but at a lot less cost to the planet. Realizing this, scientists and designers are now consciously emulating life’s genius. Explore biomimicry as both a philosophy and a practical methodology with examples of groundbreaking innovations and their role in ensuring the success of a new industrial revolution that is greener and more sustainable over the long haul.

HTT - Mobilizing Humanity in a New Way
Rob Miller, Chief Marketing Officer, discusses how Hyperloop Transportation Technologies and its partners are building a transportation system that moves people and goods at unprecedented speeds safely, efficiently, and sustainably. Through the use of unique, patented technology and an advanced business model of lean collaboration, open innovation and integrated partnership, HyperloopTT is creating and licensing technologies.

Founded in 2013, HyperloopTT is a global team comprised of more than 800 engineers, creatives and technologists in 52 multidisciplinary teams, with 40 corporate and university partners. Headquartered in Los Angeles, CA, HyperloopTT has offices in Abu Dhabi and Dubai, UAE; Bratislava, Slovakia; Toulouse, France; São Paulo, Brazil; and Barcelona, Spain. HyperloopTT has built a full-scale prototype in Toulouse, France and has signed agreements in the United States, UAE, France, India, China, Korea, Indonesia, Slovakia, Czech Republic, and Ukraine.

Page: 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17 

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe