| Login


Resource Library

Keyword
GO
Categories










Industries














102 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
F.tech R&D North America
F.tech R&D North America utilizes HyperView to investigate test results, using the data to inform decisions on methods to improve designs. This data will often be used to create reports and presentations during the development process, using images and animations generated by HyperView to illustrate particular areas of a component where additional work may be required. However, exporting these assets is a highly manual process of loading in results, positioning the model and taking screenshots. To allow its engineers to concentrate efforts on exploring and interpreting the results, F.tech R&D North America wanted a way of automating this process.

Formidable Challenges in Formula Student Racing
Industry: University

Challenge: Remove weight and improve performance from vehicles

Altair Solution: Optimization with HyperWorks tools


Benefits:
  • Reduce weight of vehicle while
    keeping or increasing the component
    stiffness
  • Speed up time of development process
  • Save material and real-world testing
  • Reach top rankings during competitions


Altair Enables BorgWarner to Automate Process for Determining Combined Impact of Temperature and Mechanical Stress on Turbochargers
Inherently, turbochargers are adversely impacted by hot exhaust gases. This heat impacts the material strength of the turbocharger housings, resulting in degraded performance and the potential creeping or rubbing of turbine wheels. When extreme fluctuations occur, the turbocharger can suffer from premature thermal-fatigue resulting in cracking.

QinetiQ Keeps the Army’s Kiowa Copter Flying Lighter and Longer Through HyperWorks Optimization
A large proportion of Army aircraft are legacy platforms. Program managers of these aircraft are challenged to integrate new technology into these older platforms to enable them to meet the constantly expanding demands of today’s missions. These new devices and systems, however, often add weight to the vehicle or otherwise impact mission profiles. To sustain aircraft performance, weight reduction methods need to be adopted for aircraft components if technology insertions are going to continue.

Body-In-White Design for a Six-Passenger Sports Car Architecture: Maximizing Body Stiffness and Meeting Strength Requirements Using HyperWorks
The Deep Orange Program has partnered with Altair to apply advanced computational simulation methods to their vehicle designs. Altair-sponsored internships and fellowships have enhanced student learning through
providing webinar-based and on-sight instruction of Altair HyperWorks simulation technologies. An example of these simulation-based design applications is the CUICAR Deep Orange 3 Program,the third generation vehicle prototype designed and engineered by the Clemson engineering graduate students. Deep Orange 3 features a load-bearing structure based
on innovative sheet-folding technology and a unique 3+3 seating configuration package in a sports car architecture. The following describes this design and summarizes the application of Altair HyperWorks to meet the
necessary engineering structural performance requirements for the underlying body structure.


Dante Sanchez Discusses the Optimization of Mabe's White Goods Packaging
For white goods manufacturer Mabe, the quality of the design and engineering of their home appliances is paramount. The objectives of this project were to simulate the effect of the distribution environment events to a washer and dryer product and perform optimization to improve product protection while reducing material costs and weight.

Communicate and Collaborate with PLM Systems in HyperWorks


Introduction to HyperWorks Desktop for Aerospace Applications
This course is meant for HyperWokrs Desktop users in the Aerospace environment. The course contains a tailored approach to using variuos tools within HyperMesh and HyperView for Aerospace users. Most Chapters will also contain demonstration videos based on Aerospace components.

LG Electronics Success Story
LG Electronics Performs Smartphone Drop-Test Simulation in Less than 24 Hours with New Automated Approach

Success Story: M.TEC
M.TEC Engineering Continues to Benefit and Yield New Business Due to Advantages of the Altair Partner Alliance (APA)

RUAG Space Builds Reliable Satellites with HyperWorks
“Throughput time” or “Time to Market” is a key element for spacecraft structure. Structures are the first element required to start the integration of the spacecraft and it is essential that they can be delivered in time. However, late inputs require flexibility and efficiency to limit the impact on the development and manufacturing time.
This short video shows examples of automation and standardization of the analysis processes as implemented at RUAG Space using HyperWorks.


HyperWorks Helps Volkswagen Motorsport Develop a World Champion Polo R WRC
Since January 2013 Volkswagen Motorsport compete at the FIA World Rally Championship with the Polo R WRC. To improve the vehicle performance it is essential to reduce the cars weight and inertia. Drivers perform best lap times when they feeling well in the race car. So you have to meet drivers ergonomically needs. Also passive passenger protection is an important topic. To meet these requirements an own racing seat has been developed.

NVH Webinar Series : Squeak and Rattle Simulation at Scania and LeanNova
Altair's Squeak and Rattle Director is a novel set of comprehensive software automations to rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle in assemblies.

HyperWorks helps ACENTISS in the development of Elias, a new electrically powered ultra-lightweight airplane
Recently, ACENTISS has developed the all-electric technology demonstrator ELIAS (Electric Aircraft IABG ACENTISS) based on the one-seater UL aircraft ELECTRA ONE from PC-AERO GmbH.
To perform all the needed engineering and development work of the project ACENTISS applied Altair’s HyperWorks suite.


Demo: Visualizing results using Compute Manager
Shows how you can visualize 3D results using Compute Manager from running or completed HPC jobs by reducing large results files into a compact format and viewing them using a free HyperView Player client plug-in.

Combining topology optimization with laser additive manufacturing reveals new potential for lightweight structures
Challenge: Development of design and optimization methods to improve components made with laser additive manufacturing methods.

Altair Solution: HyperWorks, OptiStruct, Simulation Driven Design Process

Benefits: increased material efficiency, lighter and stiffer structures, less user training required, flexible and adaptable manufacturing process


MAHLE
Analysis of MAHLE's automotive components and systems creates a huge amount of simulation data which is used to generate project reports. This reporting process can be a slow, manual process that ties up a great deal of the engineering team’s time that could be better spent investigating the results. The company wanted to explore ways of streamlining its simulation results reporting process when developing new pistons and connecting rods.

Development Time Reduction at Stadler Rail
Dr. Alois Starlinger is talking about how Altair products made an impact in shortening development time at Stadler Rail.

Lead Time Reduction using Automatic Reporting Director (ARD) for MAHLE
Mahle is one of the top automotive suppliers and one of the top 3 piston suppliers worldwide. With the recent advancements in numerical simulation and computing power, the FEA process has become a major tool to look at the reliability of different design variants. With these advancements, the reporting aspect remained a relatively unchanged process of manually creating pictures and tables with all of the different results. This presentation will look at the collaboration work between Mahle and the Altair Product Development (PD) team to customize the Automatic Reporting Director (ARD) for Mahle's requirements. The goal was to use to better utilize the engineers time by automatically generating a report with standard formats, pictures, and tables. By using the ARD tool, Mahle was able to reduce the lead time for a report from over 4 hours down to less than 1 hour.

Design of a Fuel Cell Race Car for the Annual Shell Eco-Marathon with Altair Products
The student team of the university of applied sciences in Munich participates in the annual Shell Eco-Marathon. The team has to develop a very light and highly efficient race car within less than a year. As there is no time for prototyping, simulation is mandatory. Altair provided the race team with the necessary software. The team secured 3rd place in the 2015 edition of the race!


UK ATC 2015: Automated Post Processing of Multimodel Optimisation Data
Presentation by Markus Schemat, BMW Group


UK ATC 2015: Dynamic Explicit Analysis & Assessment of a Ships Steering Gear
Presentation by David Hunt, Assystem


Digital Development at Hyundai Motor Group
Dr. Byungsik Kang is explaining how upfront engineering with FEA methods made a big impact at Hyundai Motor Group. He also explains the importance of designers using simulation for their own need at the early stage of development. Last but not least he is talking about the power of the solver OptiStruct to find entirely new designs.

Close Hauled with Hyperworks - Student Team of Politecnico di Torino Sails Away from Competition
The project focused on the design and construction of a skiff, a particular kind of sail boat, within the given regatta regulation. With its modeling and calculation tools, HyperWorks helped the team to significantly reduce weight while increasing stiffness, while saving time and costs.

Auburn University applies HyperWorks to Optimize the Design of Composite Suspension Components and Monocoque for a SAE Formula Student Racecar
To optimize the car performance, the Auburn University SAE Racing Team focused on selected components that were most promising in terms of mass reduction with equal or increased stiffness. HyperWorks enabled them to reduce component mass-to-stiffness ratio, thereby improving car performance, speed up development time, as well as grow in knowledge of composite material design and optimization

Altair Aerospace: FE Model Setup and Validation
This webinar will cover a brief overview of all simulations done on an Altair benchmark airplane wing. All steps from CAD to CAE are discussed, starting with the generation of the geometry, including midsurface generation to meshing and mapping CFD results. The presentation concludes with post-processing and automated report generation.

Sujan CooperStandard Achieves Lightweighting and Performance Targets with Altair
Sujan CooperStandard manufactures (anti-vibration) NVH products for leading automotive companies. Currently, the automotive industry is under extreme pressure because of environmental norms and has to adhere to stringent government policies related to pollution control and one of the simplest ways to address these is to optimize designs and reduce weight of products and components. They began using Altair HyperWorks on the on the recommendation of their joint venture partner CooperStandard. The team decided to improvise design of their Torsion Vibration Damper using Altair solutions like solidThinking Inspire to optimize designs of the brackets and OptiStruct for structural integrity of the designs. Altair solutions have helped Sujan CooperStandard get their product designs right the first time and consistently meet their time, cost and quality targets.

ESAComp-HyperWorks Interface Recommended Workflows
The use of the ESAComp-HyperWorks interface for enhanced post-processing of laminated composite structures is introduced.

Accelerating Product Development at the Nanotech Level with Altair HyperWorks
In addition to looking for a way in which to reduce product development time through simulated modeling and analysis, Zyvex Corporation wanted to be able to communicate the features and value of its MEMS product more effectively to internal and external audiences. Using the Altair HyperWorks computer-aided engineering (CAE) framework for product design, Zyvex not only accomplished its goal to significantly speed time to market, but also used HyperView’s visualization technology to prepare informative compact slide and PowerPoint presentations on the nanotechnology to various stakeholders, including Zyvex management and potential investors.

CAE in the Nanotech-enabling World
Zyvex engineers use finite-element analysis to build microscopically small devices.

Fine-Tuning 300-Ton Haulers: HyperWorks at Hitachi Truck Manufacturing
Hitachi Truck Manufacturing sought ways of reducing materials costs for its mammoth mining trucks, while remaining within standard specifications. The company's first project using HyperWorks CAE tools enabled Hitachi to do this with accuracy. HyperWorks is now an integral part of the design process at Hitachi.

Design Optimization Applied to the Development of an Oilfield Bistable Expandable Sand Screen
This paper will cover the design, development, and testing of an expandable sand screen using bistable cell technology. In addition, the design and development of the proprietary expandable connection will be presented. The testing presented covers a wide range of structural integrity, expansion, sand retention, mudflow, and geomechanical tests performed on the screen, base pipe, and connection.

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon
Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

Cal Poly Pomona Uses HyperWorks to Design a Winning Formula SAE Racecar
Cal Poly Pomona applies HyperWorks to optimize the design of a new wheel shell and analyze laminates for a SAE Formula student racecar.


  •  
Subros Leverages Altair HyperWorks® to Build Optimized Product Designs While Reducing 60% Simulation Time and 40% Prototyping Costs
Subros is the leading manufacturer of thermal products for automotive applications in India and operates in technical collaboration with Denso. Being a major supplier of AC units to the predominant automotive segments and all classes of vehicles produced by global players in the country, it is very important for Subros to honor deadlines of product delivery with agreed benchmarks of quality. The Subros team has used Altair solutions such HyperMesh for FE modeling, RADIOSS and OptiStruct for structural analysis, AcuSolve for flow analysis, and solidThinking Inspire for Modal Analysis

Griiip
Israeli motorsport company Griiip has designed a new, fast and professional race car that combines efficiency in racing with a competitive purchase price and low running costs, to make it more affordable. By harnessing the power of data, Griiip has created the first smart connected race car – the G1 – and with it, an entirely new racing series. Accessing the software via Altair's new Startup Program, Griiip engineers employ several products from the Altair HyperWorks™ suite, among these Altair Radioss™ for crash simulation, Altair OptiStruct™ for structural optimization, general FE analysis as well as Altair HyperMesh™ and Altair HyperView™ for pre- and post-processing tasks in the development of race cars.

Duratec
Czech company Duratec Ltd. develops handmade bike frames using both aluminium and composite materials. For a recent project at Duratec presenting the latest approach in development of carbon fiber optimization of the bike frame, Altair HyperWorks was used for model creation in Altair HyperMesh, optimized via the Altair OptiStruct code and evaluated in Altair HyperView in the development and optimization of a lightweight composite racing bike frame.

HyperWorks Accelerates Design Process and Development of Diesel Export Locomotive at RDSO
Altair HyperWorks helped RDSO reduce development time and optimize structural characteristics of the diesel export locomotive. Physical testing on these large, complex structures had to be limited. Using HyperMesh/HyperView pre/post processing capabilities, RDSO were able to simulate design and verify that engineering specifications are being met and help validate the final design.

Museum of the 20th Century
For a competition launched for the Museum of the 20th Century, Zaha Hadid Architects re-invented a similarly radical approach by applying new advances in technology to generate structural and architectural expression. With Altair’s assistance, they created a plug-in for their design tool, enabling topology optimization. Altair HyperMesh was used for finite element preprocessing mesh generation, with Altair HyperView providing post-processing and visualization solutions. Structural analysis solver Altair OptiStruct provided advanced analysis and optimization algorithms.

ExoMars Rover Airbag Design and Reliability Optimization
Astrium used HyperStudy with LS-Dyna to not only optimize the landing behavior of the ExoMars lander but also to investigate the probability of failure using HyperStudy’s stochastic engine. HyperWorks’ process automation engine helped to quickly create design variations.

CAVE Sets the Stage for Real-Time Collaboration
An immersive virtual environment speeds the creation of prototypes to cut time in military product development programs.

Smart Product Packaging Pays Off
Our experts examine the challenges, advancements and trends that are changing the product packaging industry.

Dialing into Simulation to Streamline Cellular Phone Development
Upstream model simulation reduces product development time and enables Motorola to meet critical market demands.

From Incremental Change to Full Design/Validation Leap: A Multidisciplinary Approach to Optimize Safety and Crash Performance
Heavy-duty mining trucks at Hitachi are designed to meet ISO ROPS and FOPS safety requirements, while structures must be as lightweight as possible. The presentation will discuss Hitachi’s design and simulation approach, which consists of an integrated multidisciplinary analysis process. Dynamic analyses, multibody dynamics simulations, including flexible bodies and dynamic simulations are methods applied to optimize performance and vehicle safety.

The author will present examples such as the optimization of a trolley support structure, a kinematics model of a 100-ton truck and the analysis of a trailing arm. Finally, the author will share his thoughts on the important subject of how simulation can better impact the design.

HyperWorks at Wagon Automotive: Speeding Development Time While Cutting Prototype Costs
Wagon Automotive, a system and module supplier of components to major car builders,
sought ways to accelerate product development and reduce prototyping costs while maintaining high quality.
Adopting the HyperWorks suite of advanced CAE tools enabled the company to achieve both those goals.
Wagon Automotive now uses HyperWorks during the entire development cycle, from concept design to optimization.

HyperWorks at B/E Aerospace: Lighter, Safer Seats for Airline Passengers
When you settle in for a flight on a major airline, you are probably in a seat and surrounded
by equipment designed and built by B/E Aerospace. With design and manufacturing facilities
across the globe, B/E Aerospace is the leading manufacturer of cabin interior products
for commercial and private passenger aircraft. One of B/E Aerospace’s leading products
is its line of commercial and business airline seats. These seats are engineered and tested
at its Commercial Airplane Products Group in Winston-Salem, North Carolina.

Injecting Innovation in Performance Engine Design with Altair HyperWorks
MAHLE Powertrain outsourced model generation of large complex parts such as heads and
blocks to low cost countries to ensure sufficient mesh quality could be produced for their
automotive engine designs. The third party’s improved capabilities proved valuable but
ultimately MAHLE Powertrain wished to bring the process back in-house to maintain control
and reduce external expenditure. To achieve this a new pre and post-processing solution was
needed. HyperWorks was selected as the new platform as it afforded the required increase in
productivity through its automatic mesh creation and batch processes.

HyperWorks Process Manager Delivers Productivity and Quality Gains to Chassis Design Process
Using Altair HyperWorks Process Manager, M&M was able to implement best practices through standardization of CAE processes and minimize CAE analysis set-up time. Automated post-processing enabled through Process Manager facilitated a 40% reduction in time when compared with the manual practice of post-processing.

HyperWorks Cuts Design and Prototyping Costs for Truck Cabin Development and Testing
Using HyperWorks, Eicher Motors was able to significantly reduce the number of physical tests during the development process of their truck cabins. The numerical simulation helped in predicting the failure mode and estimating the stress level in the individual components in elastic as well as plastic zone prior to the first physical test.

Innovative Design Analysis Solutions to Handle the Complexity of Modern Structures
This is a press article published by CAD User Magazine in June 2009.

"The signature buildings that architects love to put up these days might be designed to enhance the architect’s reputation along with the skyline of the client city, but their increasing complexities of shape pose significant challenges for the builders. In the first instance such large projects are never single sourced. They rely on close integration between a number of partners, each addressing significant issues. Secondly,
they come with demands for shorter development times with increased pressure to reduce engineering costs (engineering, because of the complexity of the projects, being a major cost element)."

HyperWorks Improves Development Processes in Automotive Industry
In 2008 PWO Germany (Progress-Werk Oberkirch AG) had to develop and produce a new steel made automotive cross car beam (CCB) for the dash board of a new car. PWO received the CAD model, the design space definition and other pre-defined standards of the component from the customer and developed and produced the fitting cross beam based on this information. PWO used the HyperWorks Suite to develop the component. HyperMesh was used to transfer the CAD model into a FEA model, which was then used to run dedicated analysis and simulation tasks. To fulfill the requirements for crash and modal analysis, the company used OptiStruct to optimize the component, RADIOSS and other external solver to run the calculations and HyperView for the post processing. HyperForm was used to check the production feasibility of the individual components and for metal forming simulation tasks. It was important for PWO to have a software suite available that could cover all simulation tasks within one graphical user interface and licensing system.

Superior Industries Accelerates its Design Process With HyperWorks
Superior Industries was looking to identify a solution to aid in shortening the overall product design cycle through simulation. Altair HyperWorks, proved instrumental in automating some of the most tedious of tasks and dramatically impacted the design process.

Multi-disciplinary Optimization of Aero-structures
Learn about how HyperWorks can be used to perform multi-disciplinary analysis and optimization involving structural, thermal, dynamic, and fluid analysis.

Simulation Tools: Driving the Future of Design
The Clemson University Deep Orange 3 program introduced future engineers to analysis software, enabling them to develop a novel sports car concept architecture.



By Dr. Paul Venhovens

Concept To Reality Winter 2013 Subscribe to C2R Magazine

The Art of Packaging to Protect Cultural Assets
Simulation tools isolate the cause of
undesirable shipping loads on museum’s
cultural treasures.



By Nobuyuki Kamba, Ph.D.

Concept To Reality Summer / Fall 2012 Subscribe to C2R Magazine

Simulation: The Connection between Speed and Safety in Racing
Chassis manufacturer relies on simulation
and optimization to develop the fastest
– and safest – race cars on today’s circuits.


By Luca Pignacca

Concept To Reality Summer / Fall 2012 Subscribe to C2R Magazine

NVH Webinar Series: Transfer Path Analysis at General Motors
This webinar presents the most recent advancement in the vehicle development process at General Motors using Altair HyperWorks' Transfer Path Analysis (TPA) capabilities.

Automation of Engineering Analysis and Design Process in Subsea Industry
Automation of Engineering Analysis and Design Process in Subsea Industry

Automated Reporting Director
F.tech R&D North America Inc. started in 2003 at the Troy Ohio location. Today F.tech R&D North America features offices in Troy Michigan and Düsseldorf Germany. F.tech has full R&D capabilities from design and CAE, to prototyping and test. Products include subframes, suspension components, and pedals.

UK ATC 2015: How Analysis & Optimisation Help Meet the Time Consstraints in F1
Presentation by Simon Gardner, Sahara Force India


A Holistic Virtual Design Process Applied to the Development of an Innovative Child Seat Concept
There is a need to minimise product development costs and provide efficient design solutions to maintain competitiveness, so increasingly companies in the Child Restraint System (CRS) industry are turning to Computer Aided Engineering (CAE) to enhance the design and development for their products. Graco has worked with Altair Engineering to develop a group 1 CRS using an advanced CAE driven design process. The design process introduces a number of key phases in the design cycle each of which are positioned to maximize the efficiency of the structure and reduce or remove the cost involved in a traditional, iterative ‘test it and see’ approach.

Additive Manufacturing of a Satellite Antenna Bracket
Analysis and design of a 3D printed antenna support for the Sentinel-1b satellite by RUAG Space with Altair Products.

HyperWorks Becomes Part of Mechanical Engineering Curriculum at Dalhousie University
As a key industry tool, HyperWorks becomes part of the Curriculum, providing hands-on training to Mechanical Engineering Students at Dal

HyperWorks for Aerospace: Results Visualization and Interrogation
In this webinar you learn about the latest workflows for post-processing of the aerospace industry. Post-processing of composites will be discussed, as well as efficient reporting tools to quickly query huge amounts of data. You will also learn about the Matrix browser and how you can use it in your day-to-day work. This webinar includes the latest release of HW 14.0.120.

Optimization-driven Product Development at Volvo
Harald Hasselblad (PhD) - Senior Analysis Engineer at Volvo Car Group Sweden - talks about introducing an Optimization Culture Arena to support simulation driven development in his company.

HyperWorks for Crash: Model Preparation and Evaluation
This webinar will introduce the latest crash and safety capabilities in HyperWorks 14.0, working with RADIOSS, LS-DYNA and PAM-CRASH.

It also reviews other powerful tools and recommended processes available in Altair’s pre- and post-processing software.

Design Lightweight and Efficient Stamping Dies with Topology Optmization
Ford Otosan in Turkey designs big stamping dies with the help of topology optimization using OptiStruct. Weight savings of 20% were possible on their first attempt to try optimization on a new stamping part.

Random Vibration Procedure and Best Practices
In order to evaluate if a design is robust and meets design margins, engineers use a variety of analytical tools. Often a product’s duty cycle is not perfectly characterized but the statistics of a lifetime of excitation are known.
These excitations can cause fatigue when system level dynamics are excited. It is very important to understand how a system responds to these excitations and how natural frequencies interact with each other.
Power spectral density (PSD) analysis, more commonly known as random response analysis, is used to determine stresses and strains in a system that is subjected to random excitations.

Coupling Flux with OptiStruct for Acoustic Analysis
Altair’s low-frequency electromagnetic and thermal software, Flux™, offers a complete range of modeling tools able to take into account model specifications and streamline the design process.

Capitalizing on 36 years of innovation in the global context of design optimization and time-to-market reduction, our solution suite is built to assist you. The ATCx Flux™ seminar is an excellent opportunity to discover the latest developments in this best-in-class software. Industry experts will present the latest capabilities and enhancements of Flux™ 2018 - providing a comprehensive view of methodology used for the analysis, design and optimization of modern applications.

Presentation recorded in Troy, MI during ATCx Flux 2018 on March 14, 2018.

Introduction to OptiStruct for Structural Optimization
The purpose of this self paced course is to cover the basics of OptiStruct Optimization. The course contains modules introducing the basic optimization types and giving an over of each. Many exercises are available in the modules that use the See It, Try It methodology. See It allows you to watch a video demonstration of the exercise covered in the section, while Try It gives you a pdf and model to try it in the software on your own.

Note: This course requires a login to Connect to view.

Introduction to OptiStruct for Linear Analysis
The purpose of this self paced course is to cover the basic topics for OptiStruct Linear Analysis. The Setup sections will use the See It, Try It, Do It methodology to cover the concepts. See It allows you to watch a video demonstration of the exercise covered in the section.

Note: This course requires a login to Connect to view.

Mahle Discuss Its Use Of The Automated Reporting Director
A close collaboration was forged between MAHLE and Altair ProductDesign to create the automated reporting solution. While Altair ProductDesign developed the code, MAHLE described the current process and reporting requirements to ensure business alignment and an effective result. Previously, users had to create a HyperView session, adjust all the pictures, snap a picture of each desired view, bring the visual assets into PowerPoint, crop and place, go back and create call-outs, and re-examine results to create notes for the report; this is now a push button operation. Using ARD, MAHLE has successfully reduced time spent on non-engineering tasks, enabling CAE analysts to better utilize their time as engineers - yielding more analysis and better design.

  •  
Optimization Methods Land Results in ExoMars Project
Sophisticated simulation tools enable aerospace engineers to study the feasibility of airbag landing systems.

HyperWorks at Sea Ray: Engineering High-Performance Pleasure Boats
For Sea Ray Boats, the leading, U.S.-based manufacturer of high-end pleasure boats, CAE simulations
are an integral part of the design process to achieve shorter time to market. HyperWorks is deployed
for the entire analysis process of the vessel, from modeling and simulation, to visualization and reporting.
By using HyperWorks, Sea Ray’s engineers can quickly model their advanced composite structures, as well as run complex inertia relief and durability load cases.

Altair® HyperWorks® and Product Design Consultation at Force Protection
At Force Protection Inc. Altair HyperWorks and Product Design work together to increase CAE throughput and improve survivability prediction in a new class of military vehicles built for unconventional warfare.

Case Study Sogeclair
Case Study about Sogeclair's use of HyperWorks

Industry: Aerospace interiors

Challenge: Development of new flooring concept to fix the cabin seats while realizing a lighter structure, adjustable panels for all types of aircraft, and an easier installation and
maintenance.

Altair Solution: Use of HyperWorks, especially HyperMesh and HyperView as a pre- and postprocessor, OptiStruct for optimization issues, RADIOSS for linear and nonlinear simulation, and solidThinking Evolve/Inspire for concept modeling

Benefits:
  • Saving development time and costs

  • Use a new approach in the design leveraging optimization

  • Reduce product weight through structural optimization of composite components



Simulation Powers Development of Professional Power Tools
CAE is a core element in developing high-end, long-lasting professional power tools at DeWalt, a Stanley Black & Decker brand.


By Evelyn Gebhardt
Concept To Reality Winter/ Spring 2015
Subscribe to C2R Magazine



Anadolu Isuzu Increases Truck Safety with HyperWorks Products
Safety Engineer Caner Kara is talking about their usage of Altair products in the design process of trucks and buses at Anadolu Isuzu.


Time v Frequency Domain Analysis For Large Automotive Systems
It has been recognised since the 1960’s that the frequency domain method for structural analysis offers superior qualitative information about structural response; But computational and technological issues have held back the implementation for fatigue calculation until now. Recent technological developments have now enabled the practical implementation of the frequency domain approach and this paper will demonstrate this, with particular reference to the technology limitations that have been overcome, the resultant performance advantages, and accuracy. These techniques are of relevance to all the large automotive OEM’s as well as aerospace T1 suppliers and example case studies from these companies will be included.

Getting it right the First Time; how FE-Simulation with RADIOSS supports Sigma Connectivity in Streamlining the Development Process
Simulation is extensively used in the
early development phases at the Sigma
Group, where about 10-15 engineers are
working with different types of simulations.

APWorks Choses OptiStruct for Topology Optimisation for the 3D Printed Light Rider
Despite its skeletal appearance, the Light Rider is an extremely strong yet lightweight electric motorcycle designed by Airbus subsidiary APWorks as a showcase of what’s possible when OptiStruct's topology optimisation is coupled with metallic 3D printing.


Written by Tanya Weaver from DEVELOP3D.

Harita Seating Standardizes on Altair Suite of HyperWorks for all CAE Applications
HYperWorks used by leading Indian manufacturer of seating systems Harita, for homologation testing, regulations and crash analysis for all commercial vehicle seats, bus passenger seats and tractor & off-road seats

Addressing Design Development Challenges Through Simulation Driven Platform
Automotive suppliers are facing many challenges in having in-house simulation capabilities compared to that of OEM’s. One of the ways to overcome these challenges is to invest in simulation technologies that require an affordable initial investment, the ownership cost of which is low, the codes are reliable & proven, and the suite of tools provide suppliers access to a broad range of solvers (a true multi-physics environment) helping them pick and choose the solvers as per their simulation requirements. In the early stage of in-house simulation implementation at Endurance Technologies, HyperWorks was being adopted primarily for pre and post processing due to its extraordinary FE modeling solutions. With constant support, Altair team has helped Endurance in exploring and implementing various HyperWorks solvers at Endurance Technologies.

ADAS Simulation Under Severe Vibrations
Automotive radars are becoming standard equipment on vehicles. Their purpose is to adjust the distance between vehicles and/or alert the driver when dangerous situations arise. Several antenna architectures are used to cover the different safety functions in complex bumper/car chassis environment where the side
effects become more and more significant on the radar performances. Hence, automotive radar integration process becomes a very important
topic. Weak radar integration will generate gain loss, high side lobes levels and angular errors. Those degradations will impact the radar range,
the main radar axis (BSE) and the radar detection quality (resolution, ambiguity, discrimination).

Novum: University of Michigan Participates in Solar Car Challenges Around the World
See how Altair's Software is used to get University of Michigan's solar car, Novum, to the next level to compete in the World Solar Challenge in Australia and the American Solar Challenge - crossing an entire continent in both cases just on the power of the sun alone.

HyperWorks for Aerospace Applications v13
The HyperWorks for Aerospace self paced course covers the critical processes used in the creation of FEA models in the Aerospace industry. This course contains 12 modules covering aspects from model setup to post processing. Each module contains background information on the tools used and practical exercises with recorded demonstrations to help you get familiar with the tools and processes.

Note: This course requires a Connect login to view.

HyperWorks for Aerospace Applications v2017
The HyperWorks for Aerospace self-paced course covers the critical processes used in the creation of FEA models in the Aerospace industry. This course contains 12 modules covering aspects from model setup to post processing. Each module contains background information on the tools used and practical exercises with recorded demonstrations to help you get familiar with the tools and processes.

Note: This course requires a login to Connect to view.

HyperWorks Brochure
Altair HyperWorks is the most comprehensive, open architecture CAE simulation platform in the industry, offering the best technologies to design and optimize high performance, weight efficient and innovative products.

Safety Comes First – Development of a Maxi-Cosi Child Seat Using a CAE-Driven Design Process
When developing a new child seat, safety is
paramount. Dorel Juvenile, market leader in
child safety in cars, was confronted with the
task to develop a new child seat - the
Maxi-Cosi 2wayPearl. To investigate
and analyze the best feasible design,
considering the occurring forces during an
accident, Dorel Juvenile turned to Code
Product Solutions, an engineering service
provider that supports their customers
in the development and optimization of
products, using computer-aided engineering
(CAE) tools. Within the development process,
Code Product Solutions engineers employed
the Altair HyperWorks CAE suite utilizing
RADIOSS® for crash simulation, OptiStruct®
for the layout of highly loaded plastic
parts that comprise the reclining system,
HyperMesh® for pre-processing tasks,
and HyperCrash® and HyperView® during
post-processing.

HyperWorks Tailors CAE Processes to Reduce Cell Phone Development Time at Motorola
Using HyperWorks, Motorola significantly reduced CAE cycle time by automating the process of input deck generation and results evaluation. By deploying HyperWorks’ process automation engine, analysts created a customized solution to simulate cell phone models more quickly.


Programmable, Open-Architecture HyperWorks Helps Toshiba Design Smaller Hard Disk Drives to Meet Market Demand
Toshiba Digital Network Company, faced with increasing global competition in the hard disk drive (HDD) marketplace, set out to create an advantage through the redesign of their existing HDD product(s). To support this effort, Toshiba partnered with Altair Engineering to automate its design process. This was accomplished by leveraging HyperWorks powerful modeling, visualization and optimization software applications with Toshiba’s proprietary solver for fluid dynamics. The specific goal was to optimize the air bearing surface (ABS) of the HDD’s magnetic head slider. This unique product development process resulted in minimizing the flying height as much as possible while considering its stability. This, in turn, reduced the overall size of the HDD and increased its recording density. In addition, the new design was brought to market in significantly less time than with Toshiba’s traditional design process.


Introduction to HyperView
Altair HyperView is a complete post-processing and visualization environment for finite element analysis, multi-body system simulation, digital video, and engineering data. HyperView combines advanced animation and XY plotting features with window synching to enhance results visualization.

HyperView Player 14.0
Altair HyperView Player is a stand-alone 3D viewer that contains a web browser plug-in for PC and UNIX, enables the sharing of CAE models and simulation results through a browser.

HyperView 14.0 Overview
See an overview of the new features available in HyperView and HyperGraph for 14.0.

HyperView 14.0 - Multi Model Results Overlay
This enhancement allows users to plot and view results for multiple overlaid models in a single window without having to switch between the models (In previous releases, result plots could only be viewed on current model).

HyperView 14.0 - Top/Bottom (Z1/Z2) Contour
This new method of contouring can be used to read and contour results (for example, stress or strain) on both the top and bottom layers of a shell element simulteneously in a single plot.

HyperView 14.0 - Video Overlay Enhancements
Significant improvements have been made to Video Overlay. A clean overlay of a Model and Video/Image can be achieved by providing the properties of the camera used to capture the image or by a multi-point alignment method.

HyperView 14.0 - Visibility Control Toolbar
A new toolbar called Visibility Controls has been added to HyperView for quick visibility manipulation- Isolate, Hide, Display All/None/Reserve and Unmask. This toolbar works on both component and element selections.

Page: 1  2  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.