| Login

Resource Library

Keyword
GO
Categories










Industries














101 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Parametric Optimization of Fluid Dynamic Simulations using StarCD
HyperStudy's design optimization was combined with CFD simulation in order to optimize fluid flow.

Tesla Optimizes CAE - Desktop Engineering Reprint
Automating CAE connectors creation in HyperMesh and utilizing HyperStudy for pedestrian impact simulation helped optimize Tesla’s design cycle and get better crash and safety performance.

FEKO Model Type
HyperStudy 14.0 offers a new FEKO Model Type along with a guided wizard to extract responses from the model.

AcuSolve Solver Setup in HyperMesh
Discrete or continous parameters can be defined and assigned to AcuSolve solver variables once the AcuSolve case is setup. The HyperStudy Job Launcher is used to transfer the relevant data to HyperStudy.

ExoMars Rover Airbag Design and Reliability Optimization
Astrium used HyperStudy with LS-Dyna to not only optimize the landing behavior of the ExoMars lander but also to investigate the probability of failure using HyperStudy’s stochastic engine. HyperWorks’ process automation engine helped to quickly create design variations.

Simulating the Suspension Response of a High Performance Sports Car
The use of CAE software tools as part of the design process for mechanical systems in the automotive industry is now commonplace. This paper highlights the use of Altair HyperWorks to assess and then optimize the performance of a McLaren Automotive front suspension system. The tools MotionView and MotionSolve are used to build the model and then carry out initial assessments of kinematics and compliance characteristics. Altair HyperStudy is then used to optimize the position of the geometric hard points and compliant bush rates in order to meet desired suspension targets. The application of this technology to front suspension design enables McLaren Automotive to dramatically reduce development time.

HUMOS - An FE Model for Advanced Safety and Comfort Assessments
Biomechanics modelling is becoming increasingly accepted as a tool for enhance assessment of vehicle safety, in particular in the field of injury assessment and virtual testing. Firstly, a generic RADIOSS model for safety applications (HUMOS2) is presented and applications are demonstrated. Important tools associated with the scaling, and positioning of the model is also described. Secondly, an innovative model for scaling of human organs (individualization) is presented. The method which employs optimization techniques, identifies critical (optimal) anatomical control points which allow for a best scaled model of the HUMOS2 representing an individual. Finally, some remaining challenges for future human models are discussed and solution paths are described.

The Application of Process Automation and Optimisation in the Rapid Development of New Passenger Vehicles at SAIC Motor
As a relatively young automotive company, SAIC Motor has drawn on the expertise of its UK Technical Centre to help in its objective to bring a new range of vehicles to market in an aggressive time frame. CAE has formed an integral part in doing this and the UK technical centre has worked closely with Altair Product Design amongst others to utilise its Engineers’ skills as well as the Hyperworks suite of software.

The paper aims to showcase what has been achieved to date, on the Roewe 550 medium car programme - currently on sale in China - and on another current vehicle programme, where processes have been developed further. Several interesting optimisation examples are highlighted in the development of the body structure as well as some key process improvement methodologies which have been jointly developed between SAIC and Altair to streamline the design process.

Dante Sanchez Discusses the Optimization of Mabe's White Goods Packaging
For white goods manufacturer Mabe, the quality of the design and engineering of their home appliances is paramount. The objectives of this project were to simulate the effect of the distribution environment events to a washer and dryer product and perform optimization to improve product protection while reducing material costs and weight.

DeWalt Optimizes Power Tools with HyperWorks
The development of modern electric power tools requires special attention to be simultaneously paid to both the efficiency and user comfort of the tool, as well as the robustness and durability of the devices. For the fulfillment of these two groups of attributes, computer-aided simulations using HyperWorks has become central to the development process of Stanley Black & Decker Deutschland GmbH.

Northwestern University Success Story
Using HyperWorks for Teaching Computational Optimization Methods in Engineering Design at Northwestern University

Optimizing Cooling Passages in Turbine Blades
Turbine blades have internal passages that provide cooling during operation in a high
temperature engine. The design of the cooling passages is critical to achieve near uniform
temperature of the blade during operation. The temperature of the blade is dependent on the thermal properties of the blade material as well as the fluid dynamics of the air circulating in the cooling passages. Computational optimization methods have successfully been applied to design lighter and more efficient structures for many aerospace structures. An extension of these techniques is now applied to guiding the thermal design of a turbine blade by designing the optimal cooling passage layout. Optimization methods will be applied to determine the optimum pattern of the cooling passages and then to optimize the size of the individual cooling passages. The goal is to produce a more thermally efficient turbine blade design that will produce blades with longer lives and better performance.


Optimal Design Exploration Using Global Response Surface Method: Rail Crush
As design exploration and optimization methods have become commonly accepted across a range of industries, such as aerospace, automotive or oil and gas, they are frequently utilized as standard practice to efficiently produce designs and aid critical engineering decisions. The widespread acceptance of these methods coupled with the power of modern computing has led to applications across a range of design problems and ever-increasing complexity. The size and scope of this expansion continually pushes the boundaries of existing exploration and optimization methods. Furthermore, a complete exploration of the optimal design space includes computationally intensive features such as multi-objective optimization, to understand the trade-off between competing objectives, and global optimization, to avoid local extrema.


Optimization Drive Design - A Desktop Engineering Sponsored Report
Optimize every stage of product development with an integrated workflow that democratizes simulation and analysis. In this Desktop Engineering sponsored report Altair's vision for product optimization is analyzed

Seat Design for Crash in the Cloud - NAFEMS World Congress 2015
The benefit of design exploration and optimization is understood and accepted by engineers but the required intensive computational resources have been a challenge for their adoption into the design process. The HyperWorks Unlimited (HWUL) appliance provides an effective solution to these challenges as it seamlessly connects all the necessary tools together in the cloud. The aim of this study is to showcase the benefits of HWUL on an optimization driven design of a complex system. For this purpose an automotive seat design for
crash loadcases is selected.

Minimising Mass and Increasing Durability of a Vehicle Suspension System Using OptiStruct
Gestamp selected Altair to develop a set of custom tools within HyperWorks, eliminating the need for an initial 'trial and error' design loop while reducing mass and increasing durability of a rear twist beam suspension system. The company achieved a reduction in lead time while producing competitive low cost, low mass RTB designs.

A New Approach to Optimizing the Clean Side Air Duct Using CFD Techniques
An integrated approach to CFD design optimization is proposed. It consists of taking an initial CAD design, meshing it using HyperMesh, analysing it using Star-CD, parameterising its key features using HyperMorph, and then shape optimizing it using HyperStudy. This approach has been applied here to the shape optimization of the compressor inlet duct of a turbo system.

Delivering World Class Chassis Design
This paper details the extensive use of CAE optimisation technology at ThyssenKrupp Automotive Tallent Chassis Ltd (TKA). There are a number of trends in the automotive business that are presenting great challenges, these include severe cost pressures from OEM’s, platform commonisation and reduced vehicle development cycle time. The use of optimisation is critical for TKA to maintain its competitiveness, this paper deals with more advanced concepts of optimisation by extending into the severely non-linear region of analysis types.

The Automatic Calibration and Robustness Assessment of a Complex Engineering Component: Airbag Inflation
This paper describes the application of new technology to achieve automatic calibration and assess the robustness of an airbag inflation model. Calibration of the kinematic response of the airbag is achieved by defining the activity as an optimisation problem. The objective is to minimise the error between the experimental test and numerical simulation curves. Once calibration has been achieved, a unique robustness assessment is performed, which utilises the optimisation technology used in the calibration exercise.

The Complete Package: Applying Altair's Technology Process to Reusable Packaging Design
This paper demonstrates the flexibility that Altair technology provides throughout the design process with tools applicable to all stages. An overview of the LINPAC design process incorporating Altair's technology is given together with examples of how and which tools are being implemented. The limitations of the traditional LINPAC approach and the use of Altair's tools is demonstrated through the use of a detailed example; without the use of Altair technology, more iterations in expensive tool modifications would have been required to achieve a satisfactory design without introducing unacceptable costs.

Automotive Modal Testing Support and CAE Correlation Using Altair HyperWorks
To derive the natural frequencies and mode shapes of a given structure, the test Engineer has to decide on excitation positions that will efficiently excite all the modes of the structure in the frequency range of interest. Excitation positions are usually decided upon from experience or trial and error methods which can be time consuming and still not capture all of the modes in the selected frequency range. Using Altair HyperStudy and Radioss (bulk), Pre-test CAE analysis has been carried out to identify effective excitation positions before the commencement of modal testing, thereby significantly reducing pre-test lab time.

HyperWorks 14.0 Webinar: Integration of FEKO into HyperWorks 14.0 - Features & Benefits
FEKO, the leading electromagnetic simulation software for antenna design and placement, EMC, RCS and other applications is fully merged into HyperWorks 14.0, the new release of Altair’s CAE simulation software platform.

Through examples and demonstrations, this webinar will present the new extensions and features in FEKO 14.0, including the addition of curvilinear wire meshes to reduce computational requirements while keeping accuracy. Extensions have been added to the time domain solver and to the cable modeling tool. Users will also benefit from CAD handling, scripting and automation improvements. Active RCS calculations are now possible, among other features that will be presented.

Thanks to being part of HyperWorks, FEKO now includes integration with HyperStudy, the multi-disciplinary design exploration, optimization and stochastic analysis tool. This will be shown during the webinar, together with the integration with other Altair products FEKO users will benefit from, like HyperMesh (high-performance finite element pre-processor), PBS Works (HPC workload management software) and Altair’s cloud solutions.

The advantages of FEKO’s new licensing scheme as part of HyperWorks will be discussed as well.

Design-Optimization of a Curved Layered Composite Panel Using Efficient Laminate Parameterization
In this paper, presented at the 2016 SAMPE Long Beach Conference, an aircraft door surround model is optimized with respect to the objectives and constraints typical for this type of component using HyperStudy and ESAComp.

ESAComp for Aerospace
One page flyer showcasing how ESAComp can be applied for design optimization in the aerospace industry.

Achieving Superior Crash Performance for the Souest DX7
Analysis and optimization to improve crash performance while reducing reliance on physical tests.

Lightweight and Durable Design of Automotive Components
This webinar covers how advanced optimization techniques helped FCA Engineering India Pvt. explore the lightweight component design of a vehicle suspension system. For this purpose, the development process of a track bar bracket will be shown, highlighting how a lightweight and durable component design was achieved.

MBD Series: Lightweight Design
Tony Norton - Executive Vice President Product Design at Altair Engineering - talks about MBD being an essential tool in finding accurate loads for a subsequent optimization. He also introduces Inspire Motion and explains the Sub-Space Response Surface MDO Solution developed by his Product Development team.

UK ATC 2015: Automated Post Processing of Multimodel Optimisation Data
Presentation by Markus Schemat, BMW Group


Altair Aerospace: Fail-safe and Multiphysics Optimization
This webinar covers the complete fail-safe optimization process of a wing rib starting with the search of a new and more efficient design to the calculation of optimum dimensions. The replacement of a metallic fitting by an organic 3D printed version, while increasing performances and decreasing mass reduction is discussed as well. HyperStudy has also been used to perform multi-disciplinary studies throughout the process.

Flux Webinar: Efficient Solutions for EM Design Exploration and Optimization
In this webinar we will demonstrate how Altair HyperStudy, HyperWorks’s multi-disciplinary design exploration tool coupled to Flux can help engineers in the design of high-performance products and reduce cost and the development cycle.



Antenna Placement Optimization for Vehicle-To-Vehicle Communications
Vehicle-to-vehicle (V2V) technology has the potential to significantly enhance driver safety. The type, placement, and orientation of V2V antennas all affect the performance of the communication system. Simulation software for high frequency electromagnetics can be used to analyze the farfield effects of various vehicle antenna configurations without the need to perform physical testing. We present a simulation-based method for optimizing the placement and orientation of a monopole antenna on a vehicle using a Global Response Surface Method (GRSM).

Snap-Fit Optimization for Achieving Desired Insertion and Retention Forces
Snap-fits are ubiquitous engineering features used to quickly and inexpensively assemble plastic parts. The geometric, material, and contact nonlinearities associated with snap-fit problems can present modeling challenges. Quasi-static solutions with explicit solvers are commonly used to analyze snapfits; however, OptiStruct’s nonlinear solver now possess the ability to solve these highly nonlinear problems implicitly. The first part of this study discusses an effective approach to using OptiStruct for the implicit finite element analysis of snap-fits. Once an accurate simulation model has been created, engineers typically make design changes in order to achieve desired insertion and retention forces. The second part of this study details how HyperMesh morphing and HyperStudy can be used to optimize the snap-fit design, resulting in desired insertion and retention forces while minimizing mass and ensuring structural integrity. The approach documented in this report can reduce the design time, material use, and failure rate of snap-fits used in industry.

Magnet Weight Minimization of PMM over Multiple Operating Points
Magnet Weight Minimization of Electric Traction Interior Permanent Magnet Motor Over Multiple Operating Points

This paper describes the process of using Altair tools such as Flux for synchronous permanent magnet motor EM FEA analysis and HyperStudy to minimize the weight of the NdFeB magnets of a typical IPM motor for electric traction application such as the IPM motor of the Toyota Prius 2010.

System Optimization with Altair MotionSolve 
This presentation was given at the 2019 ATCx Multibody & System Simulation conference at the Altair Headquarters in Troy, MI.

Providing Designers Easy Access to Powerful Simulation Tools
Brompton Bicycle discuss the benefits they have seen from moving away from simulation in their CAD system to a more powerful and flexible system from Altair.

Seat Design for Crash in the Cloud
The benefit of design exploration and optimization is understood and accepted by engineers but the required intensive computational resources have been a challenge for their adoption into the design process. The HyperWorks Unlimited (HWUL) appliance provides an effective solution to these challenges as it seamlessly connects all the necessary tools together in the cloud. The aim of this study is to showcase the benefits of HWUL on an optimization driven design of a
complex system. For this purpose an automotive seat design for crash loadcases is selected.

Design Exploration and Optimization of an Aluminum Profile
Faraone Srl - a company leader in designing and manufacturing "transparent architectures" - as been working with Altair to develop an optimization and design exploration workflow for their aluminum profiles. Profiles initially designed with Altair Inspire, are then passed to the new Design Explorer tool - included in Altair HyperWorks X - to further evaluate and refine the design.

HyperWorks CFD Optimization Helps MTU Improve Diesel Engine Compressor Blade Performance
To increase turbo charger efficiency, global diesel engine supplier MTU Friedrichshafen GmbH
combined Altair’s HyperWorks computer-aided engineering (CAE) software suite with a
computational fluid dynamics (CFD) solver. Combining the morphing capabilities of HyperMesh (the
pre-processor for finite-element [FE] analysis and CFD) with HyperStudy (the solver-neutral design
study and optimization tool), MTU redesigned the shape of the compressor blades to improve
pressure gain and efficiency. The redesign, in turn, increases the fuel efficiency of the engine.

E-motor Design using Multiphysics Optimization
Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.



The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.


Subros Leverages Altair HyperWorks® to Build Optimized Product Designs While Reducing 60% Simulation Time and 40% Prototyping Costs
Subros is the leading manufacturer of thermal products for automotive applications in India and operates in technical collaboration with Denso. Being a major supplier of AC units to the predominant automotive segments and all classes of vehicles produced by global players in the country, it is very important for Subros to honor deadlines of product delivery with agreed benchmarks of quality. The Subros team has used Altair solutions such HyperMesh for FE modeling, RADIOSS and OptiStruct for structural analysis, AcuSolve for flow analysis, and solidThinking Inspire for Modal Analysis

Using Multiphysics Optimization to Design High Performance Rotating Machines
Light-weight, low cost, compact, high efficiency are some of the many objectives and constraints that have to be considered when designing a rotating machine.

To meet these various challenges it is necessary to take into account several physical aspects:

- electromagnetic
- structural
- thermal

This presentation shows how Altair HyperStudy can involve several Altair solvers to consider different requirements into a single optimization and will be illustrated through various examples.


Magnet Weight Minimization of Electric Traction Interior Permanent Magnet Motor Over Multiple Operating Points
This paper describes the process of using Altair tools such as Flux for synchronous permanent magnet motor EM FEA analysis and HyperStudy to minimize the weight of the NdFeB magnets of a typical IPM motor for electric traction application such as the IPM motor of the Toyota Prius 2010.

Deployment of HyperWorks for Undergraduate Teaching (Mechanical) by Christophe Bastien | Coventry University
Positive destinations of leavers is a key metric for any University. A major aspect in achieving this metric is to successfully develop industry ready graduates, possessing a well-proportioned balance between hands-on simulation/software experience, practical skills and a robust theoretical foundation.

Based on Christophe's personal experiences of teaching Finite Element Analysis (FEA) and optimisation techniques to mechanical, automotive and aerospace engineering students, this presentation will discuss some of these metrics in greater detail, including:

- The importance of collaboration between academia, industry and software suppliers.
- Strategies for software implementation into undergraduate teaching.
- Examples of success and perhaps some of lesser successful implementation.
- The changing landscape of student expectations and previous experience.
- Continuation into taught and research postgraduate studies

Hyperworks X: Morphing Examples on a Turbine Blade
This brief demo shows the easy accessibility to morphing in HyperWorks X. Different examples are shown to explain, how to take advantage of Altair's morphing technology.

Expert Emulation in Crash Optimization using Machine Learning
In optimization it is sometimes desirable, but not possible to define constraints that fully reflects an expert’s requirements. This may lead to a design that does not function as intended. Machine Learning enables the user to set up subjective constraints, ensuring a design that has been trained to replicate the expert’s opinion. In this presentation machine learning is used to ensure axial crush for an automotive front crash event.

Multi-physics Electric Motor Optimization for Noise Reduction
In an electric machine, the torque is generated by electromagnetic forces which also create some parasitic vibrations of the stator. These vibrations excite the mechanical structure on which the motor is fixed and generate sound. When designing the electric machine, this aspect has to be taken into account from the start since it depends on the harmonic content of the currents that feed the machine, on the shapes of the rotor and stator, and on the interaction of the electric frequencies with the natural mechanical modes of the structure.
To simulate this phenomenon, a coupling between electromagnetic calculations and vibration analysis has to be set-up. Some optimization procedure can also be added in order to reduce the noise.
In what follows, it is shown how Altair HyperWorks suite; specifically FluxTM, OptiStruct®, HyperMesh® and HyperStudy® products have been successfully used to perform a multi-physics optimization for noise reduction in a fuel pump permanent magnet motor.

Inclusion Matrix
The inclusion matrix enables optimizers to optionally accept available run data as an input. This can save significant time during the optimization process, as the optimizer can utilize previously run data.

HyperWorks 2017: Optimization Driven Design
Design optimization manifests itself in all levels of Altair’s offerings; software, product design and packaged solutions. This is all carefully planned and implemented so that the engineers and analysts can benefit from these functionalities without leaving their native environments.

Indian Engineering Institute CoEP Establishes CAE Optimization Center Employing Altair HyperWorks
This success story illustrates how a reputed engineering institute of national acclaim has set-up a CAE - Optimization Lab, equipped with Altair HyperWorks CAE tools, to expose their students to the latest technologies in product design, analysis, and optimization.
Within the range of the CAE - Optimization Lab, CoEP has launched various courses to impart knowledge on Altair HyperWorks. This CoEP initiative bridges the gap between industry expectations and needs and the knowledge that graduating students possess. Being trained on advanced and contemporary technologies such as the HyperWorks
suite has opened new opportunities for students to embark their career, has improved the national ranking of the college due to investing in a modern and robust infrastructure, and also has benefitted the industry by creating a talent pool of well-trained manpower, available to work on breakthrough engineering initiatives.

Baker Hughes Drills 60% off Product Development Time With HyperWorks-Driven Simulation
One of the world’s leading suppliers
of oilfield services, products, technology
and systems, Baker Hughes operates globally
with nearly 59,000 employees. The company,
headquartered in Houston, Texas, recently
recorded $21.4 billion in annual revenue
from sales of both services and highly
innovative products for the world’s oil
and natural gas industry.

Fluid - Structure Interaction Analysis and Optimization of an Automotive Component
This paper discusses the behavior of a flexible flap at the rear end of a generic car model under
aerodynamic loads. A strong bidirectional coupling between the flap’s deflection and the flow
field exists which requires this system to be simulated in a coupled fluid-structure manner.

Renault
Carmakers the world over are investing heavily in the development of lighter vehicles and more economical engines that can go further on less fuel. Renault’s powertrain division wanted to further decrease the weight and increase the performance of existing and in-devolopment engines by redesigning key components to use a minimum amount of material. As an existing user of Altair’s simulation solutions, Renault approached Altair ProductDesign to assist in the development of the required optimization design methods and processes for use
at component and sub-system levels.

Forming Simulation of Woven Composite Fibers and Its Influence on Crash Performance
The automotive industry, in its constant quest for weight reduction, is increasingly considering composite materials as a substitute for sheet metal components to meet future fuel consumption standards. However, composite forming processes are expensive and difficult to control because of the complexity of the material behavior with fiber and matrix layers or plies and its dependency on many parameters, such as non-linearity of tensile stiffness, effect of shear rate, temperature and friction. Hence, numerical simulation could be a viable approach to predict material behavior during composite forming. The objective of this study is to highlight capabilities of RADIOSS™ to simulate forming simulation of composite plies made from woven fibers, each ply modeled as a layer of woven fibers along two directions of anisotropy, warp and weft. For validation the well-known double dome model published in NUMISHEET’05 proceedings is used. The compared result is the shear angle after stamping that is, the final angle between warp and weft fibers, at several prescribed points on the ply. The variation of this angle has a strong impact on material characteristics which severely deteriorates when a critical value is reached. Hence, a study on crash simulations is performed, after mapping fibers angles from stamping simulation.

HyperWorks Structural Optimization Reduces Suspension Design Time at Alfa Romeo
Using Altair HyperWorks, Italy-based Alfa Romeo was able to significantly reduce design time by
integrating multibody dynamics (MBD) with structural optimization. The resultant suspension
design showed superior performance characteristics.

Simultaneous Robust and Design Optimization of a Knee Bolster at Jaguar & Land Rover
Jaguar Cars needed a practical process to simultaneously optimize the robustness of a design
and its performance. Altair HyperStudy is applied to the design of an automotive knee bolster
system whereby the design is optimized to account for different sized occupants, impact
locations, material variation and manufacturing variation.

Design Development of a New Consumer Personal Care Product Pack Driven by Optimization
Packaging designers must constantly inject innovations to attract consumers in a constantly evolving and highly competitive market. Keeping ahead of the competition by bringing new and exciting products to market fast, and at the necessary level of quality, presents a major engineering challenge. A new deodorant pack development process is described, which introduces advanced simulation and optimization technology into the concept development phase. Detailed predictions of interacting parts in a mechanism assembly are made possible through use of advanced simulation technology. Design optimization is then employed using the modelling as a virtual testing ground for design variants. The approach provides clear design direction and helps to improve performance and reduce uncertainty in the development process.

HyperWorks at Wagon Automotive: Speeding Development Time While Cutting Prototype Costs
Wagon Automotive, a system and module supplier of components to major car builders,
sought ways to accelerate product development and reduce prototyping costs while maintaining high quality.
Adopting the HyperWorks suite of advanced CAE tools enabled the company to achieve both those goals.
Wagon Automotive now uses HyperWorks during the entire development cycle, from concept design to optimization.

Designing All-Terrain Vehicle Frames Using Topological Optimization
Upfront concept design optimization on a all terrain vehicle frame resulted in a 9% mass reduction. Using Design of Experiment (DOE) methods, peak accelerations during crash decreased by 22%.

Simulation Links Welding Data to Structural Analysis Models
A robust modeling process greatly aids the design of lower cost and higher quality welded structures.

Assystem Used HyperWorks CAE Simulation to Design, Simulate and Test Nuclear Encapsulation Vessels
Assystem is an international engineering and innovation consultancy group with a presence in 14 countries and 8500 employees.

HyperMesh, RADIOSS and HyperStudy were used to design the safest possible nuclear encapsulation vessel for securely containing nuclear material. The designs not only achieved pressure vessel code PD5500 standards, but also helped Assystem gain external accreditation for the pressure vessel’s compliance to code.

Download the Assystem Case Study


CAE Simulation driven Product Development of Expandable Liner Hanger
CAE Simulation driven Product Development of
Expandable Liner Hanger presentation given by Ganesh Nanaware of Baker Hughes at ATCx Energy 2014.


Multi-Disciplinary, Integrated Systems Simulation from Requirements
Government solicitations for proposals, or RFPs, for aircraft and airborne systems require preliminary designs with enough fidelity to accurately predict performance, in order to prove the design's ability to meet the Governments performance requirements. Modern high-performance computing provides the leverage to execute previously expensive analyses in areas such as computational fluid dynamics. The results of these high order analyses can be used to populate parameters in 1D systems models which can be easily coupled to medium order models from other disciplines. These capabilities allow the design engineer to rapidly iterate to levels of model maturity and accuracy not achievable years ago, resulting in high levels of confidence in the designs performance predictions in unprecedented time.

Moving forward, Altair engineers will employ Multiphysics and co-simulation to execute the Engineering and Manufacturing Development phase (EMD) for one subsystem of the preliminary design developed in the afore mentioned pre-acquisition phase.

e-Motor Concept Quick Design with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


Automated Tests and Reports with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
Discover Altair FluxMotor: Easy-to-Use Software Dedicated to e-Motor Concept Design
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
An Efficient and Automated Design Strategy for Multi-physics E-Motor Development
This presentation introduces an application of a unique, highly automatic, multi-physics design strategy for E-motors, based on a current program at Mercedes-AMG GmbH. The strategy considers essential development requirements including electromagnetics and thermal requirements, NVH, stress and durability. It accommodates for DOE, multi-objective optimization and design exploration methods to be used to explore and find feasible motor designs. The presentation will show how the strategy adds efficiency to the E-motor development process and how it impacts the total costs of development.

Using Machine Learning and Optimization to Develop e-Motor
The Altair Multiphysics platform provides a broad portfolio of solvers and tools to help engineers develop e-motor design requirements by using simulation and optimization methods. This presentation provides examples, using Altair Machine Learning and optimization solutions, of the e-motor requirements by leveraging in data available, which is key for e-motor designers to reduce time-to-market.

Fast Assessment and Optimization of the Energy Efficiency of Electric Machines with Altair Flux
In the early stage of the design of an electric machine, it is key to assess its potential in terms of global energy efficiency when submitted to specific duty cycles.

This presentation will show how:

- FluxMotor is able to extract efficiency maps in a very fast way.
- FluxMotor can be coupled to Altair HyperStudy for design exploration and optimization studies, considering the efficiency over duty cycles as an objective function to be maximized.


Simulation Powers Development of Professional Power Tools
CAE is a core element in developing high-end, long-lasting professional power tools at DeWalt, a Stanley Black & Decker brand.

Putting Simulation Muscle Behind a Sporty Concept Car
Optimization technology delivers innovative suspension design for Alfa Romeo's sleek concept car.

Optimization Methods Land Results in ExoMars Project
Sophisticated simulation tools enable aerospace engineers to study the feasibility of airbag landing systems.

Cleveland Golf Drives Product Innovation Through Simulation and Optimization Using HyperWorks
Much more goes into a golf club than simply wood, iron and graphite. To shape the performance, the distinctive appearance, the personalized feel and even the sound of the club striking the ball, manufacturers must precisely engineer every aspect of the design. Today, simulation-driven design has dramatically reduced development time for new golf clubs while allowing them to meet strict regulations more efficiently.

Designing the Future of e-Mobility
Altair develops multiphysics simulation technologies that allows designers to
accelerate next generation mobility solutions development. From smart control
design, to powertrain electrification and vehicle architecture studies, our solutions
enable optimization throughout the development cycle.

Collaboration between the Design Studio and Aerodynamics – the future
This presentation discusses Altair’s capabilities for analyzing and refining ideas during the concept stage of automotive design. The ultimate objective of all CAE is improved decision making and this is achieved by understanding the multiple behaviors of the widest variety of ideas as soon as possible in the design process. The presentation will illustrate how newly released Altair tools can be used to bridge the gap between Aerodynamics and the Design Studio to understand the performance of ideas as early as the sketch pad, using the skills and resources you already have in house. Altair’s vision for conceptual design in the future will be presented.

Altair HyperWorks Brochure
Altair HyperWorks is the most comprehensive, open architecture CAE simulation platform in the industry, offering the best technologies to design and optimize high performance, weight efficient and innovative products.

Programmable, Open-Architecture HyperWorks Helps Toshiba Design Smaller Hard Disk Drives to Meet Market Demand
Toshiba Digital Network Company, faced with increasing global competition in the hard disk drive (HDD) marketplace, set out to create an advantage through the redesign of their existing HDD product(s). To support this effort, Toshiba partnered with Altair Engineering to automate its design process. This was accomplished by leveraging HyperWorks powerful modeling, visualization and optimization software applications with Toshiba’s proprietary solver for fluid dynamics. The specific goal was to optimize the air bearing surface (ABS) of the HDD’s magnetic head slider. This unique product development process resulted in minimizing the flying height as much as possible while considering its stability. This, in turn, reduced the overall size of the HDD and increased its recording density. In addition, the new design was brought to market in significantly less time than with Toshiba’s traditional design process.


Reducing Weld Distortion by 93% with HyperStudy
Gestamp Tallent Ltd is a world class designer, developer and manufacturer of cutting edge, chassis structural and suspension products, body in white structures, modules and systems for the automotive industry. Gestamp used the BMW MINI front subframe tower to demonstrate the weld distortion optimisation approach. The tower is particularly susceptible to distortion due to its tall and thin dimensions. The objective of this optimisation was to minimise the distortion of the tower measured by the displacement of the top of the tower as the weld sections cool. In order to further investigate weld removal optimisation they chose HyperStudy.

Weld Distortion Optimisation using HyperStudy
Distortion induced in parts due to the cooling of welds complicates automated manufacturing lines in the automotive industry. The resulting deformation leads to additional investment such as end of line machining to correct affected assemblies. Utilising optimisation software a welding pattern can be found which retains the intended performance of a part while reducing the distortion induced from welding. Weld locations may be optimised alongside welding sequence to allow process requirements to be considered within the early design stage. This leads to high performance, low distortion assemblies which can ultimately be manufactured at the lowest possible cost.

Design Optimization with Feko and HyperStudy
See how easy it is to use the Optimization SDK in other applications.

SimLab Tutorials - Parametric Optimization using HyperStudy - Part I
Start recording a nominal problem; create parameters; import a parametrized CAD file; create a 2D/3D mesh using the parameters; solve and define the study responses

SimLab Tutorials - Parametric Optimization using HyperStudy - Part II
Create a new study inside HyperStudy; register solver script; setup nominal problem; conduct a DOE study; build a fit model; optimize on the fit

In-depth Optimisation with Altair Feko & HyperStudy
Altair Feko is a well-known and trusted numerical analysis tool for a wide range of problems in electromagnetics. Its efficient solvers make it a very good tool to utilize as part of a process that explores solution spaces or performs advanced optimisation tasks in electromagnetics.
Altair HyperStudy makes a strong complement to Altair Feko for exactly this purpose. This webinar will introduce attendees to HyperStudy and demonstrate how its features and workflows can help electromagnetics scientists and engineers explore solutions spaces with advanced design of experiments (DOE) strategies and perform advanced optimisations using hyperdimensional solution surfaces.


What's New in HyperStudy 2019
Find out about the new features of HyperStudy 2019

Altair HyperStudy New Feature Overview
View a high level overview of the new features available within HyperMesh 2019.


Altair HyperStudy Bubbles Plot
Bubble plots can be used to view additional information in a scatter plot window.


Altair HyperStudy FAST Fit Method and Lookup Model Type
FAST automatically builds the best fitting functions. To accomplish this, HyperStudy is automatically testing all the methods available and their settings to figure out the most appropriate method to obtain the best quality fit for each approximated function.


Altair HyperStudy Model Linking
Workflow and user interface changes have been made to the Model Resources dialog to streamline the experience by providing a clearer visual representation of the run’s directory structure.  This will make setup and review more intuitive.


Altair HyperStudy System Reliability Optimization (SRO) Method
System Reliability Optimization (SRO) is a new, highly efficient reliability based design optimization (RBDO) method.  This new method requires a reduced number of runs, and allows reliability constraints to be applied to not just the individual failure constraints but to the overall system reliability.


Benchmark of HyperStudy Optimization Algorithms
The objective of this paper is to assess several optimization algorithms in HyperStudy for their effectiveness and efficiency. The following sections of this paper present an overview of the optimization algorithms frequently used in HyperStudy. This is followed by benchmarking of both single objective and multi-objective optimization problems, respectively.

Altair HyperStudy Datasheet
Altair HyperStudy is a multi-disciplinary design exploration, study, and optimization software for engineers and designers. Using design-of-experiments, metamodeling, and optimization methods, HyperStudy creates intelligent design variants, manages runs, and collects data. Users are guided to understand data trends, perform tradeoff studies, and optimize design performance and reliability. HyperStudy’s intuitive user interface combined with its seamless integration to Altair HyperWorks™ makes design exploration technology accessible to non-experts.

FEKO Webinar: Design Optimization with FEKO & HyperStudy
Solving complex design problems with an approach based on intuition can be challenging, especially when multiple design parameters interact with one another and several design goals are targeted. Join us for this webinar in which we will present a brief summary of different optimization methods, together with workflow demonstrations to set up a design.



HyperStudy 14.0 Overview
Watch the video to see an overview of the new features in HyperStudy for 14.0.

e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
By coupling Altair FluxMotor for e-Motor concept design with Altair HyperStudy, more design exploration and optimization can be accomplished, while considering duty cycles.
Further information are available on Altair connect.


  •  
Improving Performance Using FEKO and HyperStudy at Northrop Grumman
Scott Burnside, Senior Antenna & RF Engineer at Northrop Grumman, explains how Altair Feko and HyperStudy can be combined to design and optimize antennas for land vehicles, helicopters, and aircrafts.

FREE eBook: Introduction into Fit Approximations with Altair HyperStudy
A first eBook on DOE with HyperStudy has been released in the beginning of 2017. We hope you have appreciated it and learned useful knowledge helping you to improve your studies.

Free eBook: Design of Experiments with HyperStudy – A Study Guide
The objective of this eBook is to demonstrate how to use Altair HyperStudy to perform Design of Experiments (DOE), i.e. how to identify critical design variables and their contribution to the design performance.

e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
Designers starting with a blank page face an unlimited number of configurations and need to quickly select machines types. By coupling Altair FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage, defining their constraints and their objectives. A typical objective is to reach maximum global efficiency across a given duty cycle. Then, designers can select and focus on the topologies that fulfill the main specifications before going further in their design.

Page: 1  2  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe