| Login

Resource Library

Keyword
GO
Categories










Industries














89 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
APWorks Choses OptiStruct for Topology Optimisation for the 3D Printed Light Rider
Despite its skeletal appearance, the Light Rider is an extremely strong yet lightweight electric motorcycle designed by Airbus subsidiary APWorks as a showcase of what’s possible when OptiStruct's topology optimisation is coupled with metallic 3D printing.


Written by Tanya Weaver from DEVELOP3D.

Thales Alenia Space
Companies from across a wide range of industries are attempting to find the potential impact that additive manufacturing (AM) could have on design and manufacturing processes. During its own efforts to explore AM and its potential for space satellite development programs, Thales Alenia Space Spain wanted to conduct a research project to see how optimization techniques could be used in conjunction with new manufacturing technology. The primary objective of the study was to use design optimization techniques to reduce the thermal compliance of a satellite’s aluminium filter bracket, while also optimizing the component for weight and readying the final design for the additive manufacturing process.

Technische Universität Dresden
The team at Technische Universität Dresden used Altair Inspire to redesign a Formula Student steering column mount that saved 35% of the weight and is produced with additive manufacturing.

MIT, Pune
A university team at MIT, Pune used topology optimization and additive manufacturing to develop two new designs for the Quad-rotor UAV drone that were lighter and stronger than previous designs.  

More Efficient and Economic Injection Mold Tools thanks to Topology Optimization, CFD Simulation and 3D Printing
Toolmaking is usually characterized by cost-intensive, custom made, single-unit production. To create innovative tools, the industry increasingly relies on new manufacturing methods such as 3D printing. To meet market demand, PROTIQ GmbH, a spinoff from Phoenix Contact needed to increase productivity through more efficient injection mold tools. The Altair solution included development of optimized tools using simulation, optimization and additive manufacturing (model setup with HyperMesh, topology optimization and FE analysis with OptiStruct, CFD analysis with AcuSolve and refinement with solidThinking Evolve. The benefits included increased productivity due to shorter production cycles, weight reduction of 75%, shortened development time and production costs reduced by 25%.

Robot Bike Co.
Developing a Fully Customizable, Additively Manufactured Mountain Bike

Alstom
Alstom coupled topology optimization with additive manufacturing to explore the feasibility of alternate manufacturing to traditional casting. This resulted in a 70% weight reduction of its locomotive component.

Ryerson’s International Hyperloop Team
Ryerson's International Hyperloop Team utilized finite element analysis and topology optimization to redesign a metal additive manufactured motor bracket. PolyNURBS was used to make the design 3D print-friendly.

Using Topology Optimization with solidThinking Inspire for Improved Casted Rail Compoments
A simulation driven approach was taken using solidThinking Inspire for topology optimization, Evolve for shape refinements and HyperWorks for FE analysis for the optimization of an existing component design to be manufactured with casting/AM technologies

HardMarque
HardMarque coupled topology optimization with additive manufacturing to conceptualize and refine the design of a piston. The final piston design is 23.5% lighter than the original design. 

Empire/Renishaw
Renishaw and Empire Cycles utilized generative design to conceptualize the world's first metal additive manufactured  bicycle frame. This resulted in a 33% weight reduction of the bicycle.

INTECH DMLS Achieves 27% Weight Reduction in 3D Printed Satellite Component using Altair Inspire™ and OptiStruct™
INTECH DMLS is playing the visionary role in the field of metal-based DMLS 3D printing in India since its inception in 2012. The company with this rich expertise in metallurgy and machining, established themselves rapidly as the leader of the Metal Additive Manufacturing industry in India. Sinteneering Innovations®, the company’s tagline signifies its commitment to innovation in manufacturing and marks the beginning of a new era in metal manufacturing.

Aeroswift
The South African aviation manufacturing solutions provider Aerosud and the South African Council for Scientific and Industrial Research (CSIR) teamed up to launch a challenging 3D printing project, Aeroswift. Aeroswift collaborated with Altair to develop a methodology for designing large additively manufactured products. An Unmanned Aerial Vehicle (UAV) frame was designed as a demonstration and subsequently printed on Aeroswift. To improve manufacturability while meeting all component requirements, the project engineers used Altair Inspire™ and its topology optimization capabilities in the design process.

Using HyperWorks® to Optimize Structural Strength for Argon 18 High-performance Bikes
Argon 18 recently partnered with the ÉTS Research Chair on Engineering of Processing, Materials and Structures for Additive Manufacturing to manufacture a new track bike for Lasse Norman Hansen, one of the athletes competing for the Danish team in track cycling at the 2016 Rio Olympic Games. Their aim was to develop a bike that was stiffer, highly integrated, more aerodynamic, providing greater efficiency. An important aspect of the project was the development of a new aluminum stem to be used by Mr. Hansen in the Flying Lap event which is achieved by the fastest lap from the moving start. Altair solutions included OptiStruct for structural analysis, AcuSolve® for CFD, and Virtual Wind Tunnel.

From Die Design to Defect-Free Castings: Shiva Tool Tech Achieves 80% Time Reduction with Altair Inspire Cast
Shiva Tool Tech is an automotive manufacturing focused, industrial powerhouse based in Pune, India. With over 25 years of experience in designing and manufacturing of gravity die casting (GDC), low-pressure die casting (LPDC), high-pressure die casting (HPDC) Dies, the company supports customers from manufacturing process design to the production stage. Manufacturing processes include milling, drilling, hardening, grinding, Computer Numerical Control (CNC) machining, Electrical Discharge Machining (EDM), inspection and polishing to get the final assembly of the casting die.

Motorcycle Crankshaft Modeling with SimLab at BMW Motorrad
Learn about the semi-automated motorcycle crankshaft modeling process developed at BMW Motorrad based on Altair's pre- and post-processor SimLab. The scripts developed take the FE model generation time down from 2 weeks of manual work to half a day.

National Composites Centre
The National Composites Centre (NCC), in collaboration with the Manufacturing Technology Centre (MTC), Advanced Manufacturing Research Centre (AMRC) and University of Warwick (WMG) worked on a collaborative project to develop a Cross-Catapult technology demonstrator; the Mono-Ski or Sit-ski, a device for sports that uses adaptive equipment on mountain slopes, designed for individuals with lower extremity limitations. Composites were used extensively in the new Sit-ski design with the Altair HyperWorks™ suite being utilized throughout the development process.

Dimensions Furniture
Dimensions Furniture incorporates industrial design and modeling software to design and render furniture products for presentation to buyers and direct handoff to manufacturing teams.

AAM
American Axle & Manufacturing employed topology optimization and FEA to redesign an automotive carrier to achieve a weight reduction of 20%.

Novellini
Novellini applies industrial design and modeling software to set the pace of innovation for the manufacture of bathroom solutions and wellness products in Europe.

Using HyperWorks to Generate Electrically Large Surface Meshes for Radar Cross Section or Antenna Placement Simulation
Radar Cross Section (RCS) and installed antenna placement are important parameters for aircraft designs. RCS is a measure of how detectable an object, such as an aircraft, is with radar. A large RCS indicates that an object, such as a jet aircraft, is easily detected.


SELEX Galileo used HyperWorks to generate arbitrarily large surface meshes, with defined electrical properties at the element level, for use with electromagnetic (EM) solvers to calculate either RCS of an aircraft or to determine where to place an antenna for optimum performance.


For this case study a fast-jet aircraft with approximately 100 million mesh elements was assessed for radar tracking and avoidance capabilities.

HyperWorks Helps to Develop Race-Winning Yacht for Volvo Ocean Race 2009
The CAE suite HyperWorks has been used by ABstructures to structurally design and optimize the winning yacht in the Volvo Ocean Race, Ericsson 4. The yacht, skippered by Torben Grael, claimed victory in the Volvo Ocean Race on June 27, 2009 in St. Petersburg, Russia, after 8 months and more than 37,000 nautical miles sailed around the world
under the harshest conditions.

Enhanced Formability through Hydroforming
Cut sheet metal forming time and costs through simulation-based techniques.

Creating a Virtual Press to Optimize the Extrusion Process
Today's advanced computational tools increase productivity and quality, as well as lower energy consumption in the design and fabrication of extrusion dies.

Quality Driven by CAE
Advanced CAE tools enable companies to design quality into their products.

HyperWorks’ Stamping Simulation Technology Helps Reduce Front Housing Development Time at OMAX Auto
Using Altair HyperForm, India-based OMAX Autos was able to significantly reduce production
costs and maximize productivity by redesigning the manufacturing process for front housings.
Leveraging HyperForm’s simulation capabilities, OMAX Autos reduced the three-stage forming
process to a single-stage process.

HyperWorks’ Sheet Metal Forming Simulation Technology Enables Supreme Pressfab to Validate Fuel Tank Die
Using Altair HyperForm, India’s Supreme Pressfab was able to predict the high nonlinear
material flow for fuel tank dies accurately. In doing so, Supreme was able to optimize the
blank as well as minimize die tryouts.

Sheet Metal Transfer Dynamic Analysis Using Altair HyperWorks at Ford Motor Company
By applying Altair HyperWorks simulation technology, Ford Motor Company has been capable to simulate the dynamic behavior of their new generation of crossbar transfer presses.
Altair solutions have been adopted to optimize the automation tooling design and the
transfer motion operational parameters.

HyperForm Sheet Metal Forming Solution Provides Yield Improvement of Wheel Housing and Wheel Arch
Using Altair HyperForm, Mark Auto was able to significantly improve the material utilization for their existing production dies. Mark Auto re-designed two existing dies for wheel arch an wheel housing and was able to dramatically reduce material scrap with minimum rework in their tools while not compromising on component quality.

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm
This paper details the application of a specialised genetic algorithm to reduce the mass of a laminated composite wing rib. The genetic algorithm has been customised specifically to optimise the performance of polymer-laminated composites. The technology allows the mass to be minimized by the removal or addition of plies of various discrete orientations whilst satisfying the structural intent of the component. For the rib structure assessed, the structural constraints consist of limits placed on the displacement, stress (i.e. ply failure index) and buckling behaviour.

Optimized Design for 3D Printed Valve Block Sheds Weight, Size and Gains Improved Performance
Not every component or product is suitable
for 3D printing, depending on its size, form
and design as well as the quantity needed.
A valve block is very suitable for 3D printing
and has a high potential for improvement in
weight, performance, and design freedom
when additively manufactured.

Altair Inspire Form Helps Pragati Engineering Address Sheet Metal Formability and Inconsistent Thinning Issues While Reducing Physical Try-out Time by 50%
Pragati Engineering, established in 2004, is one of the leading press tool design and manufacturing companies in India. The company has a national reach and successfully carries out projects riding on the robust shoulders of qualified and dynamic engineers from their Design department and Tool Room division. The company’s competency lies in manufacture of Press Tools Fixtures and Panel Checkers for various critical sheet-metal components and assemblies. With new technologies, facilities, and experience in Press Tooling, the company is confident of seamlessly catering to any requirement in the sheet-metal forming segment.

Sharda Motors – Usage of Altair CAE Solution for Durability Analysis
Sharda Motor Industries Limited (SMIL) is the market leader in the country in the manufacturing of exhaust systems, catalytic converters, independent suspension systems, seat frames, seat covers (two and four wheelers), soft top canopies, and stamped part for white goods products. Their state-of-the-art manufacturing facilities help them to continuously focus on new products, innovation, technology upgradation, and research & development. The facility seamlessly caters to various emission norms ranging from BS4, BS6, and Tier 4.

Optimisation of a Collapsible Economic Container “COLLAPSECON"
At the forefront of innovation at CEC Systems is the world’s first semi-automated Collapsible-Economic-Container. Achieving a 4:1 ratio, COLLAPSECON® enables 4 empty containers to be collapsed and combined to form a single container, improving operational efficiency, enhancing return on investment and reducing the impact on the environment. For the design for mass production and optimal operational use, the Altair HyperWorks Suite was leveraged to find solutions for weight reduction without increasing manufacturing costs. The newly engineered container is potentially 30% lighter than the original design, whilst reducing material requirements, increasing manufacturing efficiency, and reducing cost.

U-Shin Improves Product Design of Automotive Parts with Altair CAE Solutions
U-Shin is a global automotive part supplier, specializing in the development and production of automotive system appliances and mechatronics products as well as on the research of element technologies. Safety, reliability, adaptability, quality, eco-friendliness, are among the major concerns of the company.

Triton Bikes
Triton Bikes utilized Altair Inspire to Increase performance, decrease the overall weight, and simplify manufacturability of a 3D printed custom bike rear yoke.

Gordon Murray Design
Overcoming the Challenges of Composite Design



Automotive manufacturers are utilizing lightweight materials as a method of minimizing mass and maximizing fuel economy. Automotive design company, Gordon Murray Design (GMD) believes that composite materials can play a much larger role in the manufacture of vehicles. To prove its case, the company has developed ‘iStream’, an efficient process for manufacturing low and high volume cars from lightweight material. To validate the iStream structure, GMD required an experienced simulation partner.

Optimization of Photovoltaic (PV) Mounting Structures – Savings on Material and Cost
Photovoltaic specialist Thesan, a subsidiary of global manufacturer Savio S.p.A, manufactures, and distributes mounting structures, consisting of a so-called Purlin, a Rafter, and a Pole (and Hat), designed to withstand potentially occurring loads from wind and snow, as well as dead loads. Drawing on the Savio Group’s competence in the design of steel and aluminum structures and thanks to a team of over 40 engineers, they are to satisfy every construction requirement of photovoltaic power plants at all altitude and climatic conditions, using any specific fixation requirements. For a recent project requiring optimization of a mounting structure of a medium sized PV field with a power of 5 MW, engineers used HyperWorks. The benefits included reduced material usage, reduced manufacturing and transportation costs and improved competitiveness for Thesan.

Pranav Vikas Achieves 17% Material Savings with Light Weight and Optimised Product Designs using Altair HyperWorks™ Solutions
With over 2 decades of experience in manufacturing Aluminum Heat-exchangers such as Condensers, Evaporators, Heaters, Radiators, Oil Coolers, IHX and Roof AC units, Pranav Vikas (India) Private Limited (PVL) today is one of the largest and most diversified Heat-exchanger manufacturers in India. The company currently is the only fully integrated Condenser manufacturer in India with their own state-of-the-art Micro-tube facility at Ranjangaon, Pune. PVL serves leading global and Indian Original Equipment Manufacturers (OEMs) in the Passenger, Commercial, and Off-road vehicle segments.

Imperial Auto has Successfully Validated the Contact Pressure for O-Ring by Contact Analysis using Altair OptiStruct™ Solution
Established in the year 1969, Imperial Auto is one of the biggest integrated manufacturers of ‘Fluid Transmission Products (FTPs) in the world. The company has eight dedicated manufacturing and assembly plants in India. The grand vision of the company’s top management can be easily gauged from the strategic and technical alliances that Imperial has formed with major international players in their industry.

Serapid
Serapid, the developer and manufacturer of the original Rigid Chain, designs and manufactures telescopic mechanical actuators for the horizontal and vertical movement of heavy loads. See how they use Altair SimSolid™ to aid in gravity loads of complete structure simulation.

An Advanced Method for Optimising Packaging Design
Consumer product packaging designers are faced with conflicting requirements throughout the development process. Good pack aesthetics are vital for the success of the product, whilst unit costs must be minimized and suitability for stacking and transportation maintained. This paper describes, by example, how design optimization technology can be used to enhance the design process. It is demonstrated that the technology can be employed to provide clear design information for the pack designers, facilitating definition of an attractive shape incorporating features to meet the structural and manufacturing requirements whilst minimizing cost.

Assa Ashuach uses solidThinking Inspire to Optimise 3D Printed Stool Design
Industrial Research and product design consultancy Assa Ashuach Studio, design and manufacture lifestyle products and also limited edition studio pieces using new design and production methods to achieve unique forms and aesthetic qualities.

Less Interior Squeak and Rattle Noise Using a Simulation Driven Design Approach
In the development of new vehicles, the PSA Group aimed to detect Squeak and Rattle (S&R) problems before availability of physical testing. This led to a collaboration between PSA’s method development engineering team and Altair’s domain experts.

Explicit Dynamic Simulation of Tool Drop on the Outer Wing of the Swift020 Unmanned Aerial System using Radioss®
The successful launch of a new platform UAS is a comprehensive design engineering and manufacturing endeavor. The full lifecycle must consider maintenance and replacement components. As these requirements often require the use of tools (i.e. screw drivers, wrenches, pliers), the concern became apparent that as the flight surfaces are minimum gage, heavy tools dropped on the structure could cause irreparable damage. The objective of this project was to determine the specification for maximum maintenance tool weight such that, if dropped from a nominal height of 0.762 meters, would not cause permanent damage to any part of the Swift020 UAS. The Altair solution included a Radioss Explicit Dynamic Impact Simulation.

Sujan CooperStandard Achieves Lightweighting and Performance Targets with Altair
Sujan CooperStandard manufactures (anti-vibration) NVH products for leading automotive companies. Currently, the automotive industry is under extreme pressure because of environmental norms and has to adhere to stringent government policies related to pollution control and one of the simplest ways to address these is to optimize designs and reduce weight of products and components. They began using Altair HyperWorks on the on the recommendation of their joint venture partner CooperStandard. The team decided to improvise design of their Torsion Vibration Damper using Altair solutions like solidThinking Inspire to optimize designs of the brackets and OptiStruct for structural integrity of the designs. Altair solutions have helped Sujan CooperStandard get their product designs right the first time and consistently meet their time, cost and quality targets.

Aircraft Carrier Alliance
Creating a Structurally Efficient Design for the Queen Elizabeth Class Aircraft Carrier

When making key decisions at the concept and preliminary design phases of a naval ship project, the designer is often obliged to work with limited data on the major structural design drivers for the vessel. This can lead to a largely subjective design approach which can result in inefficiency and even structural problems being locked-in from the start. To solve any issues, increased material use, weight and unnecessary complexity, as well as high design and manufacture costs can be introduced to the end product. To evaluate the potential of simulation-driven design under the unique requirements of naval ship design, the ACA partnered with Altair ProductDesign.

Alex Thomson Racing
Composite Optimization of a Racing Yacht Coach Roof



Alex Thomson Racing required a team of composite material design and manufacture specialists to bring their expertise to a number of areas of the IMOCA Open 60 yacht. A key component that required attention was the development and production of the yacht’s sliding coach roof. The coach roof is designed to offer Skipper, Alex Thomson protection from waves crashing over the deck while still allowing him to sail the boat to its full potential while remaining highly robust and lightweight.

Airbus
A380 Weight Reduction through Optimization



Through collaborative partnerships with Altair in the UK, the software was developed to produce an innovative rib design, which resulted in an optimized weight saving over 500kg per aircraft. Exceptional team working has been an essential component in ensuring the total integration of design, manufacturing and supply chain capabilities.

Tallent Automotive
Customized Solutions to Reduce Chassis Mass by 25%



To meet the growing demands for lightweight, fuel efficient vehicles, Tallent Automotive required a more automated method to produce minimum mass sheet metal chassis components which took performance targets and manufacturing constraints into account.

Re-Loc
Re-Loc is a UK based company that developed a new product to help to accelerate the process of positioning metal reinforcement bars inside concrete bricks. The Re-Loc product is a clip that fits tightly inside the brick’s cavity and attaches to the bar, holding it securely in place as the cavity is fillled with concrete. The team had already developed a rough design and proved that it could perform its intended job, but problems arose when it came to the high manufacturing cost of the product. Re-Loc approached Altair ProductDesign to explore ways of reducing material use and cost from the part and to bring the design to a production level.

DECKED
The huge capacity of a pickup comes at the expense of storage. The loading area is often a simple box with no ability to store smaller items safely or secure them from theft. After spotting an opportunity in the marketplace, entrepreneur, Lance Meller, started work on a well-built alternative. Lance founded DECKED with his business partner, Jake Peters, with a shared determination to create an innovative, robust and useful storage solution for both commercial users and private owners alike. The system had to be able to withstand a load of 2,000 lbs, fit it into a wide range of pickup models including those from Ford, GM, Chrysler, Toyota and Nissan and be manufactured for a compelling retail target price. DECKED selected Altair ProductDesign as it needed a partner that was able to deliver conceptual design work along with advanced engineering and prototyping services.

Sintavia
Sintavia utilized Altair Inspire to prove the ability to additively manufacture optimized aerospace replacement parts that exceed existing part performance while decreasing
the overall weight.

APEL Extrusions
APEL Extrusions employs die extrusion simulation software to test die extrusion performance. This allows APEL to greatly speed up the design process and test multiple simulations per week.

Accurate Simulation Modelling of Sports Impact Scenarios using HyperWorks
One of the key research activities within the institute is concerned with the development of enhanced human surrogate models for sports personal protective equipment (PPE) research. Impact surrogates are used to provide a representation of a living human which can then be impacted under injurious loading conditions such as a ball impacting the thigh to understand the response behaviour.

Increasing Robustness and Reliability of a Race Car Engine with AcuSolve
This study is part of Prodrive’s implementation of AcuSolve to enhance its CFD capability after many years of outsourcing these simulations.

Extending Extrusion Die Life Using HyperXtrude
Altair HyperXtrude is used to predict die
performance and run virtual die tryouts.
Using these capabilities, die designs can be
modified and tested to improve the die life
and reduce the number of die trials.

BiggerBoat Solutions Makes Waves in Auto Industry Using HyperForm to Cut Die Development Costs and Time
When the auto industry crashed in 2008
and the tool shop where Jay Weiner worked
closed its operations, he started his own
company, called BiggerBoat Solutions Ltd.
He carries out metal-forming simulations
for major tooling suppliers and originalequipment
manufacturers. With 15 years
of experience in tooling design, Weiner and
his Toronto-based practice offered a service
that no one else had perfected but that
was crucial to a key process in automotive
manufacturing: the simulation-based die
design for stamped sheet-metal parts.

Reducing Weld Distortion by 93% with HyperStudy
Gestamp Tallent Ltd is a world class designer, developer and manufacturer of cutting edge, chassis structural and suspension products, body in white structures, modules and systems for the automotive industry. Gestamp used the BMW MINI front subframe tower to demonstrate the weld distortion optimisation approach. The tower is particularly susceptible to distortion due to its tall and thin dimensions. The objective of this optimisation was to minimise the distortion of the tower measured by the displacement of the top of the tower as the weld sections cool. In order to further investigate weld removal optimisation they chose HyperStudy.

Evenflo Juvenile Products
Evenflo employs topology optimization and generative design simulation for “sustaining engineering” where fast turnaround is essential for functional improvements of  infant car seats design.

Get the Most from Your Casting Process
By applying optimization technology to casting process design, manufacturers can produce less expensive, better-quality parts in record time.

HyperXtrude Technology Predicts Flow Behavior and Profile Deflection in Extrusion Dies
Using Altair HyperXtrude Sweden based AB Elektrokoppar was able to identify the flow problem in the extrusion die. Altair HyperXtrude is used to analyze material flow through the die and predict final profile shape as it exits the die. Profile deformation predictions form HyperXtrude were in good agreement with experimental measurements from the Elektrokoppar extrusions.

HyperWorks at Wagon Automotive: Speeding Development Time While Cutting Prototype Costs
Wagon Automotive, a system and module supplier of components to major car builders,
sought ways to accelerate product development and reduce prototyping costs while maintaining high quality.
Adopting the HyperWorks suite of advanced CAE tools enabled the company to achieve both those goals.
Wagon Automotive now uses HyperWorks during the entire development cycle, from concept design to optimization.

Simulation Links Welding Data to Structural Analysis Models
A robust modeling process greatly aids the design of lower cost and higher quality welded structures.

Lushan Primary School
Tucked away in a remote location in the mountains, designed by ZHA, the Lushan primary school, when complete, will be an educational institute located 160 kilometers North-West of Nanchang, the capital of China’s Jiangxi province.

Where Is Your Performance Data?
A new data management system lets engineers easily manage, share and leverage simulation and test data.

Simultaneous Robust and Design Optimization of a Knee Bolster at Jaguar & Land Rover
Jaguar Cars needed a practical process to simultaneously optimize the robustness of a design
and its performance. Altair HyperStudy is applied to the design of an automotive knee bolster
system whereby the design is optimized to account for different sized occupants, impact
locations, material variation and manufacturing variation.

Improved Mechanical Performance and Reduced Cost of a Solar Panel System with HyperWorks
HyperWorks proved to be exceptionally valuable in Luxon’s work for a major producer of a large-scale industrial panel system, which measures approximately 50 x 70 feet and rotates to track the sun. The company had a system in production but sought to lower the cost of manufacturing. Additionally, Luxon’s customer wanted to expand the geographic locations where the system could be installed successfully, so it asked Luxon to develop
a more robust support structure to ensure that the system would survive the seismic,
wind and snow loading that the product was likely to encounter in various parts of the world.

Failure Criteria for Stamping Analysis in Radioss
In this paper, several failure criteria are compared in their ability to predict necking point and failure propagation during a forming process. The paper has been presented at the 2014 IDDRG Conference in Paris, France.

Intel Solution Brief: Maximize Performance and Scalability of Radioss on Intel® Xeon® Processor E7 v2 Family-Based Platforms
This paper summarizes the findings of a benchmark study with Radioss and Intel® Xeon® processors. In the study, Altair benchmarked Radioss using a modified crash simulation model on a single-node platform -- Radioss was able to easily take advantage of all 60 cores, running the workload 2.75X faster than on a comparable 24-core platform.

Haier Redesigns Air Conditioners and Packaging with Altair HyperWorks to Eliminate Drop Damage
Haier Group is one of the world’s largest manufacturers of home appliances and consumer electronics. The company is the leader of its industry in China, where it is headquartered.



Haier ships its products all across the globe and in more than 100 countries, so well designed product packaging is crucial to the company’s ability to deliver products without damage to even the farthest destinations.



Download the Case study to see how Altair was able to reduce costs of physical testing and eliminate drop damage using simulated drop testing with HyperWorks.

HyperWorks Helps Create Accurate Finite-Element Models from CT Scans of Artificial Knee Joints
Using Altair HyperMesh, the HyperWorks finite-element (FE) pre-processor, researchers at the
University of Applied Sciences in Amberg-Weiden, Germany, created an efficient process to
create FE meshes of an artificial knee joint from supplied computed tomography (CT) scans. The
team, led by Professor Franz Magerl, deployed HyperMesh’s re-meshing capabilities to convert
STL data to a high fidelity tetrahedral-based FE model and investigated the effect of imperfections
induced by the manufacturing process on part strength.

HyperWorks at B/E Aerospace: Lighter, Safer Seats for Airline Passengers
When you settle in for a flight on a major airline, you are probably in a seat and surrounded
by equipment designed and built by B/E Aerospace. With design and manufacturing facilities
across the globe, B/E Aerospace is the leading manufacturer of cabin interior products
for commercial and private passenger aircraft. One of B/E Aerospace’s leading products
is its line of commercial and business airline seats. These seats are engineered and tested
at its Commercial Airplane Products Group in Winston-Salem, North Carolina.

Railcar Manufacturer Speeds Design Modifications with HyperWorks
American Railcar Industries, headquartered
in St. Charles, Mo., designs and manufactures
commercial railroad cars, producing
every part of the car above the wheels.
Customers use the company’s railcars to
transport all sorts of liquid and solid raw
materials, including oil, coal, cement, sand,
grain and other substances. Their designs
include boxcars, gondolas and hoppers,
among other styles.

Success Story: M.TEC
M.TEC Engineering Continues to Benefit and Yield New Business Due to Advantages of the Altair Partner Alliance (APA)

Dana Adopts Altair’s SimLab to Automate Meshing of Powertrain Models with Dramatic Time Savings
Dana Holding Corporation is a world
leader in driveline, sealing, and thermalmanagement
technologies that improve
fuel efficiency, reduce emissions and
lower the cost of ownership in passenger,
commercial and off-highway vehicles.
Dana's 25,000 employees operate in
27 countries within a network of some
90 engineering, manufacturing and
distribution facilities.
Computer simulation of powertrain
components—entailing the creation of
very large models with 25,000 surfaces or
more—has long been an important aspect
of Dana’s product development process.
For many years, the company’s engineers
have employed a standard industry
methodology of transforming CAD designs
into prototypes, analyzing the prototype
to observe failure points, redesigning
the prototype and retesting until the
product met specifications.

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)
OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

Combining topology optimization with laser additive manufacturing reveals new potential for lightweight structures
Challenge: Development of design and optimization methods to improve components made with laser additive manufacturing methods.

Altair Solution: HyperWorks, OptiStruct, Simulation Driven Design Process

Benefits: increased material efficiency, lighter and stiffer structures, less user training required, flexible and adaptable manufacturing process


Monash Motorsport takes advantage of optimization and additive manufacturing technologies and wins again!
Since their first Australian SAE Student Racing competition in 2000, the Monash Motorsport team has steadily improved the performance of their race car. Recently the students discovered the benefits of combining Altair‘s OptiStruct optimization technology and 3D printing. Based on an initial prototype rear hub design from the 2013 car, the team proceeded to pursue titanium front hubs and uprights to decrease the car’s unsprung mass. This was a tough challenge, since the former design was already made of lightweight aluminum. To tackle this, Monash Motorsport employed Altair’s optimization technology OptiStruct to design and optimize a titanium upright, which was then produced using additive manufacturing technology from CSIRO. As a result, the students were able to reduce the component’s weight by a further 30 percent whilst maintaining the component stiffness and reducing the development time and costs.

Benefits of the Symbiosis of Topology Optimization and Additive Manufacturing in Architecture
The challenge was to investigate the potential offered by the symbiosis of topology optimization and additive manufacturing for architectural projects. The Altair solution included the use of the HyperWorks suite, especially OptiStruct for optimization tasks. The benefits were reduced construction time and costs due to decreased material usage while receiving better and more esthetic results.

VTT Optimises Industrial Valve Block for Additive Manufacturing
Reprint of the article published on Metal AM - vol. 2 no. 1 Spring 2016

Big Metal Printing – Realising the Potential of Additive Manufacturing
The South African aviation manufacturing solutions provider Aerosud and the South African Council for Scientific and Industrial Research (CSIR) teamed up to launch a challenging 3D printing project, Aeroswift. Aeroswift collaborated with Altair to develop a methodology for designing large additively manufactured products. An Unmanned Aerial Vehicle (UAV) frame was designed as a demonstration and subsequently printed on Aeroswift. To improve manufacturability while meeting all component requirements, the project engineers used Altair Inspire™ and its topology optimization capabilities in the design process.

Inspired by Nature: Electric Motorcycle goes 3D - Combining Topology Optimization, New Materials, and Additive Manufacturing in the Development of the Airbus APWorks Light Rider Results in a Revolutionary Lightweight Design
The Airbus APWorks Light Rider is the world's first 3D printed motorcycle prototype. Altair OptiStruct® was used for inspiration of its organic structure. Using additive manufacturing, a simulation-driven design process approach and topology optimization during the process achieved optimum lightweight design.

Topology optimization and new manufacturing methods enable lightweight design in agricultural engineering
Amazone develops and produces innovative agricultural technology, enabling and supporting modern and economical arable farming methods. For the re-design of an originally welded suspension component as a casting part, solidThinking Inspire was used for topology optimization. The benefits included increased durability by a factor of 2.5 and an 8% reduction in weight.

Fully automated in a single process: Optimization and manufacturing of CFRP components
Use of HyperWorks and adapted threestep optimization process for Composite materials integrated in the production process

Benefits:
  • process suitable for large volume series
  • flexibility in production
  • short learning curve for users
  • light and yet stiff components


HyperForm Improves Accuracy and Robustness of Tool Design and Manufacturing Process at Summit Auto Body (SAB)

HyperForm Improves Accuracy and Robustness of Tool Design and Manufacturing Process at Summit Auto Body (SAB)

Leveraging HyperForm’s sheet metal forming solution, SAB designed the validation process and press tool design covering the vital areas of virtual prototyping/testing, which, in turn, reduced the time-consuming manual process drastically.

Fine-Tuning 300-Ton Haulers: HyperWorks at Hitachi Truck Manufacturing
Hitachi Truck Manufacturing sought ways of reducing materials costs for its mammoth mining trucks, while remaining within standard specifications. The company's first project using HyperWorks CAE tools enabled Hitachi to do this with accuracy. HyperWorks is now an integral part of the design process at Hitachi.

Gordon Murray Design Discuss the Future of Automotive Manufacturing & iStream
Dr Ralph Clague, Powertrain Systems Manager at Gordon Murray Design (GMD) speaks to Altair ProductDesign about the current challenges in the automotive industry and how their iStream process can deliver lighter, low cost electric vehicles. Altair ProductDesign has worked with GMD to analyse and test the safety performance of its iStream, composite material based vehicles.

SOGECLAIR Aerospace Employs HyperWorks to Optimize Additively Manufactured Aircraft Components: Topology optimization of a large engine pylon structure
To find new development and manufacturing approach to reduce weight while ensuring safety, HyperWorks offers SOGECLAIR Aerospace an innovative, streamlined development environment with more design freedom, faster development cycles, and lower costs. A CAE-driven design process combining topology optimization using OptiStruct and Additive Layer Manufacturing (ALM).

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe