| Login


Resource Library

Keyword
GO
Categories











Industries














68 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
Model Mesher Director Datasheet

Altair's Model Mesher Director (MMD) is a fully integrated, user-friendly solution that empowers engineers to import & modify geometry and mesh models with specific mesh criteria automatically with the power of Altair HyperWorks tools. Company’s face the challenge of analyzing ever larger and more complex models.

Geomechanics Director Datasheet

Altair's Geomechanics Director (GeoD) allows engineers and scientists, especially in the Rock Mechanics and Geology groups at Oil and Gas companies, to build finite element models from subsurface geology quickly and efficiently.

NVH Director Datasheet

Automotive Noise and Vibration Analysis involves some of the largest and most complex models being used for Finite Element Analysis. Models regularly involve millions of finite elements, with thousands of components and properties, along with the connections between those components.

Model Verification Director Datasheet

Altair's Model Verification Director (MVD) allows engineering analysts to validate CAD model data received from the design teams, automatically identifying potential issues that could slow down the pre-processing stage of the simulation life cycle. The MVD is embedded into HyperWorks pre-processing technology, HyperMesh and integrated into the Assembly Browser.

Impact Simulation Director Datasheet

Altair's Impact Simulation Director (ISD) solutions empower engineers and designers to simulate the impact performance of designs faster to cost-effectively produce higher-quality products. ISD solutions automate the laborious, manual tasks associated with model setup, analysis, post-processing and reporting.Highly tailored to an organization's specific procedures and best practices, Altair's ISD solutions reduce development time and costs while enhancing product robustness and performance.

Virtual Gauge Director Datasheet

Correlation between CAE and tests results is very strategic activity. It boosts the confidence in the development of the product. Altair’s Virtual Gauge Director (VGD) is a combination of customized software and services that enable engineers to extract the results at the exact position of the strain gauge as in the test lab, interpolate the results at an identified CAE location, compute results in the local coordinate system of the gauge, and give a correlation index confidence. The Director can also be used to interpolate stress or strain values at any placement in the model.

Weight Analytics Datasheet

Altair's Weight Analytics (WA) solution manages the entire Weight and Balance (W&B) process empowering engineering and management teams to control and ensure W&B attributes meet program requirements. Deployed as a common weight management tool across the enterprise, WA enables faster and more accurate decision-making with on-demand access to visualize, analyze and predict W&B at any point in time during the entire Product Lifecycle (PLC).

Squeak and Rattle Director

Altair's Squeak and Rattle Director (SnRD) is a novel set of software automations to rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle (S&R) in assemblies. Tailored to be deeply integrated within your environment and processes, SnRD offers a complete set of capabilities to streamline the entire S&R simulation workflow process from model creation to results visualization.

Automated Reporting Director Datasheet

Altair's Automated Reporting Director (ARD) empowers engineers by removing the non-value add tasks associated with the mechanics of report generation. Engineers can focus entirely on interpreting and understanding simulation results as opposed to manually creating required reports.

RAMDO - HyperStudy & OptiStruct Example

This step-by-step tutorial details how to use RAMDO with HyperStudy and OptiStruct.

White Paper: Optimizing Strain Gauge Placement with LW Finder & HyperMesh

This white paper demonstrates how to find the optimal locations to place strain gauges on a casted bracket in order to accurately measure loads.

Installation Guide: nanoFluidX 2.09

Brief installation instructions.

OptiStruct for Structural Analysis: Not Just for Optimizations Anymore

Reprint of Engineering.com article on OptiStruct as a structural analysis tool with built-in optimization capabilities

Tutorial: HW & Anaglyph Laminate Tools Integration

This document provides step-by-step instructions on how to use Anaglyph Laminate Tools within HyperWorks.

White Paper: One Source Solution for Short-Fiber Reinforced Materials in FEA

With use of today’s technology, FE simulation of the injection molding process is state of the art. Several unique solvers are available for this purpose. However, an appropriate coupling between the injection molding simulation and the mechanical simulation is required.

ESAComp 4.6 Release Notes

Highlights and new features in the latest release of ESAComp 4.6 from Componeering.

White Paper: How to Digitalize Effectively for IoT

Internet of Things (IoT) is starting to mature and organisations across many sectors are facing the challenges of scaling up from small, trial deployments and proof of concepts into mainstream, high volume consumer deployments.

White Paper: Minimization of Forming Load of Gear Driver Forging Process with AFDEX and HyperStudy

In this paper, a workflow is presented that integrates the functionalities of a metal forming simulation software, AFDEX and a multidisciplinary optimization software, HyperStudy. Using this approach, the forming load of a gear driver used in an automotive transmission is minimized and two die design parameters are optimized.

Whitepaper: A Design-Validation-Production Workflow for Aerospace Additive Manufacturing

Additive manufacturing coupled with topology optimization allows the design-and-analysis and manufacturing iterations to be reduced significantly, or even eliminated. To ensure that the part will perform as simulated, a mid-stage validation is conducted on a standardized part before creating the final products.

Design-Optimization of a Curved Layered Composite Panel Using Efficient Laminate Parameterization

In this paper, presented at the 2016 SAMPE Long Beach Conference, an aircraft door surround model is optimized with respect to the objectives and constraints typical for this type of component using HyperStudy and ESAComp.

Global-Local Analysis Using StressCheck, HyperMesh, HyperView and OptiStruct

This whitepaper describes the workflow for combining global and local analysis in structural development using StressCheck in combination with HyperWorks.

A Design-Validation-Production Workflow for Aerospace Additive Manufacturing

There is a lot of hype these days regarding Additive Manufacturing (AM) or 3D Printing. Are companies seriously looking at this technology to make real parts for actual applications? For the aerospace industry, the hype is starting to become more real.

The Art & Science Behind Manufacturing

Do you ever think about all the work that lies behind developing almost everything in the world around us? This article reflects on the tremendous effect the manufacturing process has on everything we use in our daily lives.

RADIOSS and MADYMO Coupling Tutorial

This document explains how to set up a RADIOSS coupling model using a MADYMO dummy model.

Design and optimization of a high performance C-Class catamaran with HyperWorks

Reprint of the article published on composite solutions magazine 2/2016.

Benchmark of HyperStudy Optimization Algorithms

The objective of this paper is to assess several optimization algorithms in HyperStudy for their effectiveness and efficiency. The following sections of this paper present an overview of the optimization algorithms frequently used in HyperStudy. This is followed by benchmarking of both single objective and multi-objective optimization problems, respectively.

Slotted Waveguide Array

The slotted waveguide array is a popular choice for use in radar systems due to its mechanical robustness, compactness and ability to handle high power levels.

Printed Ka-band Reflectarrays with Offset Feed

Printed reflectarrays combine the advantages of parabolic reflector antennas with microstrip arrays, yielding high-gain, low-profile, low-cost antennas with simpler feeds that are easy to fabricate. This white paper demonstrates how FEKO can be used to model a printed reflectarray and its feed.

FEKO Integrated in HyperWorks 14.0

Altair’s computer-aided engineering (CAE) simulation software platform for simulation-driven innovation is Hyper- Works, which includes modeling, visualization, analysis and optimization technologies and solutions for structural, impact, electromagnetics, thermal, fluid, systems and manufacturing applications. The electromagnetics solver suite in HyperWorks is FEKO, a comprehensive electromagnetic analysis software used to solve a broad range of electromagnetic problems. It includes a set of hybridized solvers, giving the possibility to combine methods to solve complex and electrically large problems, with all solvers included in the same package.

Electromagnetic Design in the Electronic Industry

Technology advancement in the electronic industry is unyielding, but new trends will build on RF communications to drive new product functionality. Some examples include the Internet of Things (IoT), 5G mobile networks and automation/smart technology.

Intel Solution Brief: Altair and Simulation-Driven Design

Altair and Intel offer a simple, cost-effective on-ramp to a complete simulation-driven design platform. This paper describes joint offerings including HPC and CAE in the public cloud.

ESAComp Tip: How to Easily Find Materials

This document provides a step by step guide on how to apply the search function to find suitable materials for a given project.

Efficient Design and Analysis of Airborne Radomes



Computer Simulation's Role in Advancing Composite Aircraft Structures

Reprint of an article published on the December 2014 issue of Aerospace & Defense Technology magazine

Optimization Drive Design - A Desktop Engineering Sponsored Report

Optimize every stage of product development with an integrated workflow that democratizes simulation and analysis. In this Desktop Engineering sponsored report Altair's vision for product optimization is analyzed

Benchmark Study: Optimized Drop Testing with Dell, Intel and Altair

Dell, Intel and Altair have collaborated to analyze a virtual drop test solution with integrated simulation and optimization analysis, delivering proven gains in speed and accuracy.

Applications of Advanced Composite Simulation and Design Optimization

Usage of fiber reinforced composite material entered an new era when leading aircraft OEMs took an unprecedented step to design and manufacture essentially full composite airframe for commercial airliners. Composite structures offer unmatched design potential as the laminate material properties can be tailored almost continuously throughout the structure. However, this increased design freedom also brings new challenges for the design process and software. Moreover, as a relatively new material, composite behaviors are more complex and less fully understood by design engineers. Therefore, reliable simulation for highly complex events like bird strike and ditching can play an important role in shortening the product design cycle. This paper showcases two area of CAE tools for composite applications. On advanced simulation, bird strike simulation with Altair RADIOSS [1] is demonstrated on an aircraft underbelly fairing. On design optimization, an airplane wing structure is designed using an innovative composite optimization process implemented in Altair OptiStruct [1-3]. OptiStruct has seen increasing adoption among aerospace OEMs, as demonstrated in the Bombardier application process described in this paper.

Targeting Composite Wing Performance – Optimising the Composite Lay-Up Design

This paper shows how Altair OptiStruct, part of the HyperWorks suite, is used to provide a complete solution when designing with laminated composites, taking the design through concept stages to producing the final ply lay-up sequence. The technology is applied to the design of a laminated wing cover to produce a mass optimised design which meets the requested structural targets.

Hawk T Mk2 - Arrestor Barrier (BAN MK2) Engagement Analysis

As the UK Ministry of Defence (MoD) Design Authority for Aircraft Arrestor Barrier Nets, AmSafe products are used to stop aircraft from over-running the end of the runway. The British Arrestor Net (BAN) Mk2 is suspended across the runway over-run area by two electrically driven stanchions and raised or lowered by remote control from the Air Traffic Control tower. This paper describes the process and results of a FE analysis of the engagement of the Hawk T Mk2 aircraft into a Type A Barrier (BAN Mk2). The analysis was performed using RADIOSS, an advanced non-linear explicit Finite Element solver.

Modeling of a Magic Tee Waveguide Coupler

A short depiction of FEKO‘s waveguide capability with a magic T coupler as example.

Defence or Civil Radar – it’s a Matter of Wave Propagation

Radar development was essentially motivated by military needs during the second world war, where radar use founded dozens of applications for instance navigation, aircraft location, enemy ship detection, anti-collision, and weather forecast. This white paper discusses the design challenges faced and the solutions available.

Designing an LTE Base Station Antenna with the Finite Arrays Method

This white paper demonstrates how an LTE base station antenna may be modeled with the finite arrays (DGFM) method in FEKO.

Design and Analysis of a Proximity Fuse Antenna for an Air Defence Missile

This white paper is an example of how Antenna Magus can be used to generate antennas for antenna placement studies in FEKO.

Antenna Design Methodology for Smartwatch Applications

Smart devices have touched and enhanced all aspects of our lives, from the way we conduct business to the way we relax at the end of the day. Designing antennas for wearble devices presents a unique set of challenges. In this technical article from Microwave Journal, these issues are discussed.

mmWave Axial Choke Horn Antenna with Lens

Millimeter wave (mmWave) antennas operate in the band of frequencies where the wavelength is between 10mm and 1mm. The frequency range for mmWave application is thus constrained to be greater than 30 GHz, but less than 300 GHz. Various applications exist in this frequency range, including wide band telecommunication and imaging applications for security screening. This white paper demonstrates how an antenna was designed for communication at 60 GHz.

FEKO for Rotorcraft

FEKO is well-suited for rotorcraft electromagnetic applications including antenna placement, rotor blade modulation, co-site interference, electromagnetic interference (EMI), electromagnetic compatibility (EMC) and radar cross section (RCS).

Bowtie Antenna

This paper illustrates that FEKO can be applied to the simulation of planar antennas with bowtie antennas as an example.

Reflector Antenna with Circular Horn Feed — Analyzed with Ray Launching Geometrical Optics (RL-GO)

FEKO includes several computational methods for the efficient analysis of different antenna types. Here, a large problem is solved with the full-wave and asymptotic methods. Model decomposition is used to simulate the problem more efficiently.

Automotive Radars - Antenna Design, Integration & Channel Modeling

One of the key enabling technologies in the development of autonomous vehicles is driving aid radar systems. We will highlight some of the typical challenges experienced during the design and integration of automotive radars, as well as the applicable numerical solutions that FEKO offers. Radar channel modelling with WinProp is also presented.

Two Arm Spiral Antenna

A two-arm self-complementary archimedean spiral antenna is modelled in FEKO to determine its wideband behaviour.

Microstrip Bandpass Filter

A microstrip bandpass filter is modeled in FEKO to determine its S-parameters.

mmWave Substrate Lens Antenna for Wire Communications

Wu et. al. [1] proposed designs for both single and multi-beam mmWave circularly polarized substrate lens antennas in 2001. This white paper demonstrates these designs via FEKO modeling.

A Thin, Low-Profile Antenna Using a Novel High Impedance Ground Plane

The size of the antenna for a given application does not depend purely on the technology but on the laws of physics where the antenna size with respect to the wavelength has the predominant influence on the radiation characteristics.

MRI Birdcage Coil Design

An application note on the modelling of a 7T MRI birdcage headcoil in FEKO.

Cassegrain and Gregorian Reflector Antenna Modeling with MLFMM LE-PO Hybrid Solvers

This white paper demonstrates that the MLFMM-LE-PO hybrid formulation is a very efficient and accurate method for analysis of large reflector antennas.

Conformal Multi-Band Patch Antenna

Simulating the Planar and Curved Antennas in FEKO

Cable Harness EMC/EMI: Cross Talk, Radiation, Interference & Susceptibility

Bundles of electrical cables in vehicles, aircraft, ships and buildings pose electromagnetic compatibility and interference challenges to the electrical design engineer. Due to their lengths, they are more likely to radiate or pick up irradiation than many other electrical components and systems. Through several examples, this white paper will discuss how those challenges can be met with the aid of electromagnetic simulation.

Radar Cross Section of Aircraft with Engine Inlets

At radar frequencies, 1GHz and above, asymptotic methods are usually preferred to calculate the radar cross section (RCS) of targets like aircraft, since the main parts of the target are more than an order of magnitude larger than the wavelength. The challenge is how to combine these methods to compute the RCS. In this white paper the two-step method that obtains accurate results in limited time is detailed.

Advanced Radar Cross Section (RCS) Visualization with POSTFEKO and Lua Scripting

This white paper demonstrates how Lua scripts in POSTFEKO may be used to produce advanced visualizations of RCS data that was computed in FEKO.

Modeling & Analysis of Anechoic Chambers

A white paper demonstrating how FEKO models were used during the design stages of an anechoic chamber that operates in UHF ranges.

Combining Near-Field Measurement and Simulation for EMC Radiation Analysis

Electronic components are required to comply with the global EMC regulations to ensure failure free operation. Currently, EMC measurements in certified institutes are mandatory to certify performance complies with regulations.This paper describes a practical method of combining near-field measurements and simulations to explore the radiation behavior of electronic components.

How to use FEKO with HyperMesh

This document applies to FEKO 14.0 and HyperMesh 14.0. Users who would like to make use of the benefits of the advanced meshing features of HyperMesh while solving the electromagnetic aspects of the problem in FEKO, have several options to transfer the mesh from HyperMesh to CADFEKO. This document provides the recommended options and a brief description of how to complete the model setup in CADFEKO.

Radar Cross Section (RCS) Measurement and Simulation of Generic Simple Shapes

RCS targets including the NASA almond, ogive, double-ogive, cone-sphere and cone-sphere with gap were constructed and the RCS was simulated. Simulation data is compared to measured data in open literature.

Horn-Fed Reflector Antenna

A horn-fed parabolic reflector is modeled in FEKO to determine its radiation pattern.

Metamaterials in FEKO

A description of how metamaterials may be modeled in FEKO followed by guidelines regarding the different simulation options.

Numerical Methods in FEKO

FEKO offers a wide spectrum of numerical methods and hybridizations, each suitable to a specific range of applications. Hybridization of numerical methods allows large and complex EM problems to be solved.

Probe-Fed Stacked Annular Ring Antenna

This example illustrates how a probe fed stacked annular ring antenna may be simulated in FEKO.

Resource Scaling for Antenna Placement Modeling on a SAAB JAS-39 Gripen Aircraft

This white paper demonstrates how resource requirements scale for the computational electromagnetic modeling of a modern fighter aircraft when the frequency increases. It also demonstrates how different simulation methods may be applied and how they scal relative to each other

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.