| Login

Resource Library

Keyword
GO
Categories










Industries














15 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
By coupling Altair FluxMotor for e-Motor concept design with Altair HyperStudy, more design exploration and optimization can be accomplished, while considering duty cycles.
Further information are available on Altair connect.


  •  
Automated Tests and Reports with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
Discover Altair FluxMotor: Easy-to-Use Software Dedicated to e-Motor Concept Design
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
e-Motor Concept Quick Design with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


Advanced e-Motor Design Dedicated Environment - Altair Flux FeMT
Designing an e-Motor has never been a simple task. Altair Flux, the solution for accurate electromagnetic detailed design, not only enables to quickly generate 2D and 3D motor models with its Overlays. Its new module now produces efficiency maps and automatic reports in the same appreciated FluxMotor supportive environment. Flux captures the complexity of electric motors and electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
Designers starting with a blank page face an unlimited number of configurations and need to quickly select machines types. By coupling Altair FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage, defining their constraints and their objectives. A typical objective is to reach maximum global efficiency across a given duty cycle. Then, designers can select and focus on the topologies that fulfill the main specifications before going further in their design.

e-Motors Comparison and Ranking with Altair FluxMotor
Quickly design and optimize concept machines while offering efficient comparison capabilities, Altair FluxMotor enables designers to make informed early strategic choices to select the most appropriate topologies.

The Multiphysics Optimization Platform for e-Motor Innovation
Altair develops multiphysics simulation technologies that allow you to accelerate next generation mobility solutions development. From smart control design to powertrain electrification and vehicle architecture studies, our solutions enable optimization throughout the development cycle, all backed up by a global team of engineering consultants.



Coupled Electro-Magnetic and Acoustic Simulation of an In-Wheel Electric Motor
At Elaphe, the engineers have been facing the NVH challenges from the very beginning. The topology of this electric motor, which on the one hand enables the team to use the otherwise empty space inside the wheel, can on the other hand, result in some new and unexplored NVH challenges. The experience over the years has proven that NVH is a bottleneck in the design cycle of Elaphe's motors and this was the main motivation for a more automated and more user-friendly NVH simulation workflow. Within the NVH, noise radiation was the area Elaphe was most interested in.



Using Multiphysics Optimization to Design High Performance Rotating Machines
Light-weight, low cost, compact, high efficiency are some of the many objectives and constraints that have to be considered when designing a rotating machine.

To meet these various challenges it is necessary to take into account several physical aspects:

- electromagnetic
- structural
- thermal

This presentation shows how Altair HyperStudy can involve several Altair solvers to consider different requirements into a single optimization and will be illustrated through various examples.


Considering Temperature Constraints in the Design of Electric Machines
Because of always more compact and high efficiency systems, temperature is a critical constraint in electric machine design.

Depending on the design stage, different levels of modeling can be proposed:

- 1D for fast pre-design, to
- full 3D CFD models for the validation stage.

This presentation shows, through a complete example how the Altair platform for innovation helps machine designers to manage temperature distribution and evolution.

Fast Assessment and Optimization of the Energy Efficiency of Electric Machines with Altair Flux
In the early stage of the design of an electric machine, it is key to assess its potential in terms of global energy efficiency when submitted to specific duty cycles.

This presentation will show how:

- FluxMotor is able to extract efficiency maps in a very fast way.
- FluxMotor can be coupled to Altair HyperStudy for design exploration and optimization studies, considering the efficiency over duty cycles as an objective function to be maximized.


Fast and Accurate Design of Electromagnetic Devices with Flux and FluxMotor
Altair Flux is a leading finite element simulation software for electromagnetic modeling. Used for more than 35 years in industry worldwide, and based on the most advanced numerical techniques, Flux has become a reference for the high accuracy it delivers.

Altair also recently introduced Altair FluxMotor, a new tool for the pre-design of electric machines. In a very intuitive interface, it allows defining a machine from templates, creating its winding, and characterizing its performance in a few clicks.

In this webinar, discover all the new features in the latest versions of Flux and FluxMotor.

Simulation Driven Design for Efficient Electric Machines - What's New in FluxMotor 2018
The electric motor design process can be long and tedious. Modern design tools enables designers to quickly evaluate and compare machine techinical-economic potential. Discover how FluxMotor can radically change the way machines are designed, through each stage and be able to use standard or customized parts, add windings easily and quickly attribute materials before computing its performance.

Flux Webinar: Sensor and Actuator Design for Transportation Applications
In this webinar we discuss and illustrate how electromagnetic simulating technology enables a flexible new alternative solution for electromagnetic transmission, with electromagnetic couplings replacing mechanical and differential couplers.

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe