| Login

Resource Library



25 Results
Filter by:
Slide for More Clear All Apply

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't


  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • EDA
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Structures
  • Thermal
  • Vehicle Dynamics
Clear All Apply
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Attaining Nonlinear and Multiphysics Mastery for SMBs with SimLab and OptiStruct
A growing number of companies aspire to perform multiphysics, but each added analysis tool introduces new complexity to a development process. Model translation, remeshing, design modification – these tasks offer no added value and increase the likelihood of error. Altair SimLab enables users to model and solve multiple physics, including nonlinear analysis, within one unified platform. Each analysis runs from one master model, allowing you to spend less time prepping and more time solving. Join the webinar to see these powerful workflows in action.

In this webinar, we will demo the design of a smart speaker with an emphasis on nonlinear analysis, multiphysics, and improving perceived sound with vibro-acoustic simulation.

InnAccel Leverages Altair AcuSolve for Developing Oral Hygiene Management System
A . Vijayrajan Founder and Chief Technical Officer, InnAccel talks of how simulation brings design differentiation in the medical device industry. His team speaks of the use of Altair AcuSolve solution for determining the pressure drop in the manifold of a medical device design used for oral hygiene in ICUs.

InnAccel Leverages Altair MotionSolve to Evaluate Nasal Body Removal Mechanism
A . Vijayrajan Founder and Chief Technical Officer, InnAccel talks of how simulation brings design differentiation in the medical device industry. His team speaks of the use of Altair MotionSolve solution for designing a medical device mechanism for removal of nasal foreign body in children.

Virtual Design and Testing of a Medical Autoinjector, Project Overview
Nolato specializes in polymer-based product design and manufacturing to virtually design a device to automatically inject medicines, such as insulin for diabetic patients. Within this presentation different aspects of the product design cycle are considered, including co-simulations of the device operation during the actual injection process, misuse in case of forceful bending or opening of the loading tray, and drop tests of the autoinjector. Based on Altair’s optimization technology, alternatives for the rib structure of the casing are investigated. To assure manufacturability, molding and assembly simulations are performed to identify and mitigate problems likely to occur throughout the process.

System Simulation for HVAC
Presenter: Christian Kehrer, Altair [on behalf of Oliver Höfert, Simulation Engineer at Kampmann]

The increasing virtualization of engineering methods is inevitable. This also holds true for the design of systems that take care for the thermal well-being of humans, e.g. in buildings. If it comes to simulation of so-called HVAC (heating, ventilation, air conditioning) systems, very often high fidelity approaches like CFD are connected to it. In contrary, this contribution illustrates a 1D modeling approach of a heat exchanger in use of Altair Activate.

The presentation explains the implementation of the NTU (Number of Transfer Units) method in a system simulation environment. This includes a short description of the approach itself as well as its current limits. Based on the implementation of a single cell, differing network configurations for the evaluation of use cases of varying complexity will be shown.

Integrated Systems Simulation from Requirements
Ed Wettlaufer, Technical Manager Mechatronics Group, Altair [on behalf of NAVAIR]

Government solicitations for proposals, or RFPs, for aircraft and airborne systems require preliminary designs with enough fidelity to accurately predict performance, in order to prove the design's ability to meet the Governments performance requirements. Modern high-performance computing provides the leverage to execute previously expensive analyses in areas such as computational fluid dynamics. The results of these high order analyses can be used to populate parameters in 1D systems models which can be easily coupled to medium order models from other disciplines. These capabilities allow the design engineer to rapidly iterate to levels of model maturity and accuracy not achievable years ago, resulting in high levels of confidence in the designs performance predictions in unprecedented time.

Moving forward, Altair engineers will employ Multiphysics and co-simulation to execute the Engineering and Manufacturing Development phase (EMD) for one subsystem of the preliminary design developed in the afore mentioned pre-acquisition phase.

Altaor AcuSolve New Feature Overview
View a high level overview of the new features available within AcuSolve 2019.

Aircraft Radome Multiphysics Using Simulation
Watch this webinar to see a demonstration of a multiphysics simulation approach using the Altair HyperWorks platform for the analysis of airborne radomes for electromagnetic , structural, aerodynamic, and bird strike performances.

Defining Positioning System for Heavy Lift Barge with AcuSolve
Presentation by Pawel Sadowski, Technical Support Manager at DES ART.

Even during building roads your approach may be different from the standard one. The nature often forces engineers to use their creativity and go beyond typical projects. This leads to some unique, futuristic structures or some additional projects that have to be done and at the end are invisible. Our project of heavy lift barge contains in the second group. One part of this project was to proof that positioning system is sufficient to keep right position at the sea even during unfavorable weather conditions. For this purpose we perform numerous CFD analyses using AcuSolve. Computational cases differed in angle of flow, speed of flow and configuration of the barge. As a result of these all analyses defined working area of positioning system.

SimLab for CFD and Multiphysics Webinar
This webinar shows Altair's streamlined thermal fluid-structure interaction workflow for powertrain components.

Leveraging Altair's CFD and structural analysis solvers, SimLab now offers a streamlined workflow that enables pre-, solver, and post-processing for thermal FSI within a single interface. The webinar will cover extraction of fluid surfaces to build CFD domains from solid bodies, defining loads and constraints, solver setting for conjugate heat transfer (CHT) and computing deflections and thermal stresses and post-processing structural and thermal-flow results.

A Modular Simulation Process and Data Management Solution Using HyperWorks, ModelCenter and SimData Manager
Engineering design has greatly evolved with the advent of simulation tools and computing power. Simulation software such as Altair HyperWorks suite have enabled virtual design greatly reducing or even replacing physical testings. Process integration tools like ModelCenter from Phoenix Integration have enabled the engineer to automate the execution of the simulation tools and explore complete design spaces instead of searching for the first feasible solution. The large amounts of data that are now being generated can be managed using solutions like SimData Manager from PDTec.

This webinar focuses on a prototype integration between these three products. The tools are brought together to enable automated execution of complex simulation processes involving structural analysis and CFD using Altair OptiStruct and AcuSolve solvers with built-in data management and traceability.

The Design Revolution Offered by Combining Additive Manufacturing with Simulation Driven Design
Topology optimization is a computer based calculation procedure which can design mechanically stressed component structures in such a way that the highest possible rigidity can be achieved with minimal material usage. Only those parts of a component which are essential for the required flux of force and necessary stability are generated. This results in complex structures which can only be built partially or not at all using conventional production processes. At this point the advantages of additive manufacturing come into focus.

Webinar: Structural and Thermal Coupling with Electromagnetic Systems
Electromagnetic phenomenon may induce undesired effects such as heat or vibrations. To predict and correct them by simulation, it is necessary to couple all phenomenon. Altair HyperWorks software suite is a perfect solution for this and in this webinar, two use cases will be demonstrated, where Flux is coupled with OptiStruct and AcuSolve.

Altair Aerospace: Fail-safe and Multiphysics Optimization
This webinar covers the complete fail-safe optimization process of a wing rib starting with the search of a new and more efficient design to the calculation of optimum dimensions. The replacement of a metallic fitting by an organic 3D printed version, while increasing performances and decreasing mass reduction is discussed as well. HyperStudy has also been used to perform multi-disciplinary studies throughout the process.

Webinar: Applications for Thermal and Fluid Coupling
Altair’s AcuSolve CFD solver is capable of simulating complex multiphysics phenomenon including Heat Transfer-CFD coupling. In this webinar, two use cases are presented, using two very different calculation approaches.

Webinar: HyperWorks for FSI Simulations
Altair’s HyperWorks software suite offers a wide variety of solvers able to simulate complex physical phenomenon, including multiphysics. Therefore, complex FSI applications can be solved, such as ditching or aeroelasticity, as will be shown in the two use cases presented in this webinar.

Altair Aerospace: Design a Flap Mechanism with Multibody Dynamics
This short webinar will discuss coupling of aerodynamics loading, structures vibration, mechanisms deployment and hydraulics actuation in the simulation of a high lift device. This session also includes the simulation of structure loads and actuation efficiency during flight maneuvers. A fatigue analysis ensures the longevity of the new design.

Efficient Injection Molding Tools through Optimization, CFD Simulation and 3D Printing
The company PROTIQ (www.protiq.com) worked with Altair and created a highly efficient molding tool. Optimization with OptiStruct was used to find the optimal design to guarantee the maximum tolerances of the generated products. The cooling process of the product was simulated with CFD (AcuSolve). As an overall result, the cycle time could be significantly decreased and the part quality also improved due to lower thermal deformations.

Advanced Features for External Automotive Aerodynamics Using AcuSolve
Watch this 45-minute webinar to learn more on the use of advanced features for solving “on road” external automotive aerodynamics with Altair’s CFD solver AcuSolve. The webinar will focus on the analysis of external aerodynamics for passenger and racing vehicles while performing turning maneuvers. AcuSolve’s mesh motion capabilities, along with real time cosimulation with Altair’s multi-body dynamics solver, MotionSolve give engineers the ability to better simulate actual road conditions.

CFD Webinar Series Part 1 - Unstructured Meshing using Altair CFD Solver AcuSolve

Introduction to AcuSolve
Altair® AcuSolve® is a leading general-purpose Computational Fluid Dynamics (CFD) solver that is capable of solving the most demanding industrial and scientific applications.

Based on the Finite Element method, AcuSolve’s robust and scalable solver technology empowers users by providing unparalleled accuracy on fully unstructured meshes. Applications ranging from steady RANS simulations to complex, transient, multiphysics simulations are handled with ease and accuracy.

Aerodynamic Development of a Road Cycling Helmet with AcuSolve - LX Sim
LX Sim uses HyperWorks Suite and select Partner Alliance programs from Altair to help build an aerodynamic cycling helmet.

DeWalt Optimizes Power Tools with HyperWorks
The development of modern electric power tools requires special attention to be simultaneously paid to both the efficiency and user comfort of the tool, as well as the robustness and durability of the devices. For the fulfillment of these two groups of attributes, computer-aided simulations using HyperWorks has become central to the development process of Stanley Black & Decker Deutschland GmbH.

Solving Real-Life Problems with CFD Parallel Performance of AcuSolve on Cray Systems

RSS icon Subscribe to RSS Feed

Be The First To Know