| Login


Resource Library

Keyword
GO
Categories











Industries














49 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
Improving Composite Design and Simulation Efficiency with Multiscale Designer

Dr. Jan-Philipp Fuhr - Managing Partner, Cikoni talks about developing a methodology to analyze and predict composite matrix and fiber failure using Altair OptiStruct and Multiscale Designer resulting in improved accuracy and simulation efficiency of their simulations.

Engineering Design Using a Small Autonomous Robot for Student Education

As part of educational programs for students to acquire practical skills and knowledge, Aichi University Technology (AUT) participated in a demonstration test competition aiming for future Mars exploration. A Rocket Launch for International Student Satellites (ARLISS), is a competitive event for the evaluation of autonomous robots – conducting tests relating to their autonomous descent back to the ground after being launched 400m above the ground using a small rocket. For the final designed robot, HyperWorks was used for structural analysis to understand whether or not the robot meets requirements, and MotionSolve was extremely useful for practical industrial education that is linked to CAD design.

Altair and Ziegler Instruments Combine Experience and Technologies to Identify and Eliminate Squeak and Rattle Issues

Altair has partnered with Ziegler-Instruments to enhance its Squeak and Rattle Director (SnRD), making it the most advanced and comprehensive solution on the market to predict and eradicate squeak and rattle phenomena in vehicles, aircraft and other products sensitive to Noise, Vibration and Harshness (NVH). The addition of Ziegler-Instruments’ PEM material database gives Altair’s SnRD clients access to the results for over 11,000 individual stick and slip phenomena for different materials pairs. In this video, Patrick Schimmelbauer and Jens Herting of Ziegler Instruments give an overview of the partnership and what it means to companies needing to address squeak and rattle issues.

Innovative Drone Propulsion Design using Model-Based Development

To assist Kappa Electronics’ customer with controlling the motor for a new drone design, Altair’s solidThinking Embed was used for high speed simulation of motor electronics and control dynamics to develop a novel method of sensorless field-oriented control.

Surrogate Models for Antenna Placement on Large Platforms

The RF Engineering group at the Institute of High Performance Computing (IHPC), develops advanced computational electromagnetics and multiphysics algorithms and tools, leveraging vast know-how in EMC for a wide range of applications. Typical challenges include electrically-large and multi-scale EM problems such as antenna placement on large platforms, and mutiphysics problems such as the electrical –thermal–mechanical analysis of composite materials. In a project that dealt with electrically large platforms, an efficient modelling tool was required to identify optimum antenna positions and minimize interference between various antennas. FEKO was used during the development process, helping to determine the design parameters of the surrogate models using its powerful optimization function.

MIT, Pune

A university team at MIT, Pune used topology optimization and additive manufacturing to develop two new designs for the Quad-rotor UAV drone that were lighter and stronger than previous designs.  

Explicit Dynamic Simulation of Tool Drop on the Outer Wing of the Swift020 Unmanned Aerial System using RADIOSS®

The successful launch of a new platform UAS is a comprehensive design engineering and manufacturing endeavor. The full lifecycle must consider maintenance and replacement components. As these requirements often require the use of tools (i.e. screw drivers, wrenches, pliers), the concern became apparent that as the flight surfaces are minimum gage, heavy tools dropped on the structure could cause irreparable damage. The objective of this project was to determine the specification for maximum maintenance tool weight such that, if dropped from a nominal height of 0.762 meters, would not cause permanent damage to any part of the Swift020 UAS. The Altair solution included a RADIOSS Explicit Dynamic Impact Simulation.

Characterizing the Murchison Widefield Array Beam Pattern

A precursor to the SKA, the Murchison Widefield Array (MWA) radio telescope was constructed in the Murchison Radio-astronomy Observatory in Western Australia. In order to correctly calibrate and image the data collected by the radio telescope, it is imperative that the beam pattern is known accurately. In this study, a rigorous approach was applied where the full array geometry was simulated using FEKO with a goal to characterize the beam pattern of the MWA and demonstrate that this approach was more accurate.

Use Case: KTex Family for Manufacturing

Predicting the impact of the manufacturing process on composite materials.

Sintavia

Sintavia utilized Altair Inspire to prove the ability to additively manufacture optimized aerospace replacement parts that exceed existing part performance while decreasing the overall weight.

ESAComp for Aerospace

One page flyer showcasing how ESAComp can be applied for design optimization in the aerospace industry.

Altair Offers Flexibility and Enhancement for Casting Process Design and Optimization

The goal of the project outlined in this paper is to get the optimal gating system (size and position of ingate) to help avoid porosity and other common defects in the produced parts, achieving the final design to begin casting the component.

Application of FEKO in EM Protection Design for Electromagnetic Effects of Civil Aircraft

In the limited space of a plane, a lot of radio equipment, especially antennas are installed, leading to concerns about antenna pattern distortion caused by the plane body and inter-antenna isolation. COMAC, Shanghai Aircraft Design and Research Institute continues selecting FEKO to improve the EMC performance in the developmental phase of the multiple aircraft models C919 and ARJ21.

Top Use Cases: ESAComp

Presentation introducing a few of the top use cases for the composites software, ESAComp.

RUAG Space Streamlines Composite Analysis with Improved Data Workflow

RUAG Space combines the power of the Altair HyperWorks Suite with the advanced composite failure analysis methods from ESAComp to improve their efficiency and composite modeling process.

Advanced Composite Material Calculations at eStress Using HyperWorks, LAP and CoDA

eStress' needed to develop a practical and generalized approach to assess the behavior of curved composite beams under corner unfolding loading for design sizing. This process shows how HyperWorks, LAP and CoDA worked together to achieve this.

The SKA Radio Telescope: a Global Project for a Better Understanding of the Universe

Challenging Einstein’s seminal theory of relativity to the limits, how the very first stars and galaxies formed just after the Big Bang, the study of dark energy and the vast magnetic fields in the cosmos, and the age old question “Are we alone in the Universe?” These are some of the key scientific goals of the Square Kilometer Array (SKA) project, led by the SKA Organization from Jodrell Bank Observatory in the UK, supported by 11 member countries.

SOGECLAIR Aerospace Employs HyperWorks to Optimize Additively Manufactured Aircraft Components: Topology optimization of a large engine pylon structure

To find new development and manufacturing approach to reduce weight while ensuring safety, HyperWorks offers SOGECLAIR Aerospace an innovative, streamlined development environment with more design freedom, faster development cycles, and lower costs. A CAE-driven design process combining topology optimization using OptiStruct and Additive Layer Manufacturing (ALM).

3D Printing for Innovative Mold Making Combined with Simulation Driven Design Inspiration Push the Limits for High Performance Castings

Altair, Click2Cast, HBM nCode, and voxeljet present a technology demonstration that stands out with dramatic performance improvements and the solid potential for serial manufacturing and mass production. Bringing design optimization, fatigue analysis, casting, and 3D printing together addresses the challenges of lightweight design and enables the creation of an innovative design and manufacturing process that enhances performance and efficiency.

NASA Develops Wireless Sensors to Detect Lightning Strike Damage to Composite Aircraft

Computational electromagnetic software enables a team of researchers at NASA’s Langley Research Center to develop wireless resonant sensors that can measure and mitigate lightning strike damage to composite aircraft. <br><br> By Beverly A. Beckert<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

Chiller Unit Keeps Joint Strike Fighter Pilots Cool

A model-based embedded development system enables AMETEK to design, simulate, create firmware for and validate a chiller unit control system. <br><br> By Beverly A. Beckert<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

OptiStruct Plays a Key Role in the Air Wing Design for a Multi-Disciplinary, Collaborative University Capstone Design Project

The Georgia Tech Institute of Technology (Georgia Tech) took the lead in collaborating with five Universities to develop a senior-level capstone design course that would give engineering students collaborative design experience using state-of the art computational tools. The multi-disciplinary course was completed over two semesters. Students, under the direction of University professors and industrial mentors, completed a fixed-wing aircraft design.

Combining topology optimization with laser additive manufacturing reveals new potential for lightweight structures

Challenge: Development of design and optimization methods to improve components made with laser additive manufacturing methods. Altair Solution: HyperWorks, OptiStruct, Simulation Driven Design Process Benefits: increased material efficiency, lighter and stiffer structures, less user training required, flexible and adaptable manufacturing process

Failure Criteria for Stamping Analysis in RADIOSS

In this paper, several failure criteria are compared in their ability to predict necking point and failure propagation during a forming process. The paper has been presented at the 2014 IDDRG Conference in Paris, France.

HyperWorks helps ACENTISS in the development of Elias, a new electrically powered ultra-lightweight airplane

Recently, ACENTISS has developed the all-electric technology demonstrator ELIAS (Electric Aircraft IABG ACENTISS) based on the one-seater UL aircraft ELECTRA ONE from PC-AERO GmbH. To perform all the needed engineering and development work of the project ACENTISS applied Altair’s HyperWorks suite.

CAE Technology Applicable to the Aerospace Industry - JEC Reprint

In this article, published on the May 2014 issue of JEC Composites Magazine, Shan Nageswaran explains why the latest version of HyperWorks® represents the most advanced evolution of computer-aided engineering (CAE) technology applicable to the aerospace industry.

Case Study Sogeclair

Case Study about Sogeclair's use of HyperWorks Industry: Aerospace interiors Challenge: Development of new flooring concept to fix the cabin seats while realizing a lighter structure, adjustable panels for all types of aircraft, and an easier installation and maintenance. Altair Solution: Use of HyperWorks, especially HyperMesh and HyperView as a pre- and postprocessor, OptiStruct for optimization issues, RADIOSS for linear and nonlinear simulation, and solidThinking Evolve/Inspire for concept modeling Benefits:<ul><li>Saving development time and costs</li> <li>Use a new approach in the design leveraging optimization</li> <li>Reduce product weight through structural optimization of composite components</li></ul>

HyperWorks in the Development of Aeronautic Sensors

Esterline Advanced Sensors offers its customers a broad range of high precision solutions for aeronautics (cockpit, airframe and engine) and derivative products for marine, defense and the industrial sector. Read the Case Study to see how HyperMesh improved FE accuracy and saved on development time and costs.

PBS Professional at NASA Ames Research Center

It takes a super workload management tool to power grid, cluster and on-demand computing environments for computational modeling and simulation applications at NASA.

Airbus

<b>A380 Weight Reduction through Optimization</b><br><br> Through collaborative partnerships with Altair in the UK, the software was developed to produce an innovative rib design, which resulted in an optimized weight saving over 500kg per aircraft. Exceptional team working has been an essential component in ensuring the total integration of design, manufacturing and supply chain capabilities.

NASA

<b>A Safer Landing with Water Impact Analysis</b><br><br> Using Altair’s own HyperWorks virtual simulation suite, Altair ProductDesign built an accurate finite element model of the module from CAD data supplied by NASA, as well as a section of water and air which matched the conditions from the lake used during the physical tests. The effect on the module’s structure during impact was simulated to gauge how well the results correlated with the physical tests. The results showed excellent correlation between the simulation and physical tests, identifying areas where the model, input parameters and meshing methods could be improved to give a more accurate prediction of the event.

Using HyperWorks to Generate Electrically Large Surface Meshes for Radar Cross Section or Antenna Placement Simulation

Radar Cross Section (RCS) and installed antenna placement are important parameters for aircraft designs. RCS is a measure of how detectable an object, such as an aircraft, is with radar. A large RCS indicates that an object, such as a jet aircraft, is easily detected.<br><br> SELEX Galileo used HyperWorks to generate arbitrarily large surface meshes, with defined electrical properties at the element level, for use with electromagnetic (EM) solvers to calculate either RCS of an aircraft or to determine where to place an antenna for optimum performance.<br><br> For this case study a fast-jet aircraft with approximately 100 million mesh elements was assessed for radar tracking and avoidance capabilities.

Simulation Streamlines Aircraft Door Development

The Eurocopter Group leverages analysis to cut design time and automate the process of developing safe aircraft closures.<br><br> By Michele Macchioni<br> <i>Concept To Reality</i> Summer/Fall 2011

Bird Strike Simulation Takes Flight

The increasing number of bird-plane impacts gives rise to new CAE methods to address aircraft safety.<br><br> By Robert Yancey<br> <i>Concept To Reality</i> Summer/Fall 2011

Structural Optimization Helps Launch Space Payloads

Aerospace company employs simulation software to reduce weight in the Launch Abort Manifold for the Orion Multi-Purpose Crew Vehicle.<br><br> By Blaine E. Phipps, Michael H. Young and Nathan G. Christensen<br> <i>Concept To Reality</i> Summer/Fall 2011

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)

OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

Improving Efficiency and Accuracy at Eaton Aerospace with HyperWorks

The Hydraulic Systems Division of Eaton’s Aerospace Group designs hydraulic components and systems on many of the world’s military and commercial aircraft in the skies today. Eaton uses Altair HyperWorks within it's simulation processes to improve solution efficiency and accuracy.

Airline Seat Testing Soars to New Heights

French manufacturer Sicma Aero Seat SA relies on virtual dynamic testing in the evaluation of its custom aircraft seats.

HyperWorks at B/E Aerospace: Lighter, Safer Seats for Airline Passengers

When you settle in for a flight on a major airline, you are probably in a seat and surrounded by equipment designed and built by B/E Aerospace. With design and manufacturing facilities across the globe, B/E Aerospace is the leading manufacturer of cabin interior products for commercial and private passenger aircraft. One of B/E Aerospace’s leading products is its line of commercial and business airline seats. These seats are engineered and tested at its Commercial Airplane Products Group in Winston-Salem, North Carolina.

Rotorcraft Design Takes Flight

Optimization tools enable Boeing to balance form and function in the development of advanced aircraft.

Optimization Methods Land Results in ExoMars Project

Sophisticated simulation tools enable aerospace engineers to study the feasibility of airbag landing systems.

Optimizing Aircraft Structures

Optimization technology and methods for the innovative design of efficient civilian and military aircraft.

Simulation Links Welding Data to Structural Analysis Models

A robust modeling process greatly aids the design of lower cost and higher quality welded structures.

HyperWorks Cuts CAE Modeling Time by Up to 50 Percent at Dunlop Aerospace

Using HyperWorks for the creation and modification of complex finite-element meshes, Dunlop Aerospace was able to dramatically cut modeling time. The software’s stability, ease-of-use and superior technical capabilities for HEX meshing contributed to the successful deployment.

OptiStruct Drives Weight Reduction in Commercial Aircraft: Door Support Arm Design Optimization

Using OptiStruct topology and shape optimization tools, Eurocopter created an innovative new design of a door support arm for the Fairchild Dornier 728 aircraft. The company achieved a weight reduction of approximately 20 percent, using structural optimization techniques as an integral part of the design process.

F-35 Joint Strike Fighter Structural Component Optimization

Lockeed Martin uses OptiStruct to meet the aggressive weight targets on the Joint Strike fighter project. High potential parts for mass savings include compact fittings and planar webs.

ExoMars Rover Airbag Design and Reliability Optimization

Astrium used HyperStudy with LS-Dyna to not only optimize the landing behavior of the ExoMars lander but also to investigate the probability of failure using HyperStudy’s stochastic engine. HyperWorks’ process automation engine helped to quickly create design variations.

Optimization Assisted Design of Military Transport Aircraft Structures

EADS Military Aircraft implemented an optimization assisted structural design process and applied it to the A400M rear fuselage design.

CAVE Sets the Stage for Real-Time Collaboration

An immersive virtual environment speeds the creation of prototypes to cut time in military product development programs.

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.