| Login


Resource Library

Keyword
GO
Categories










Industries














1059 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
RD-2010 Modal Frequency Response Analysis of a Flat Plate

Interactive Tutorial demonstrating how to import an existing FE model, apply boundary conditions, and perform a modal frequency response analysis on a flat plate.

RD-2000 Direct Frequency Repsonse Analysis of a Flat Plate

Interactive Tutorial demonstrating how to import an existing FE model, apply boundary conditions, and perform a finite element analysis on a flat plate.

RD-2040 Nonlinear Gap Analysis of an Airplane Wing Rib

Interactive Tutorial demonstrating how to perform nonlinear gap analysis using RADIOSS.

OS-2080 Topology Optimization of a Hook With Stress Constraints

Interactive Tutorial demonstrating a topology optimization on a bracket-hook modeled with shell elements.

HM-1030 Organizing a Model

Interactive Tutorial demonstrating tools used for model organization.

HM-2030 Refining Topology to Achieve a Quality Mesh

Interactive Tutorial demonstrating refining topology to achieve a quality mesh.

HM-3110 Meshing without Surfaces

Interactive Tutorial demonstrating meshing without surface geometry.

HM-1020 Working with Panels

Interactive Tutorial demonstrating HyperMesh panels.

OS-4070 Free-Sizing Nonlinear Gap Optimization on an Airplane Wing Rib

Interactive Tutorial demonstrating how to perform free-sizing optimization using OptiStruct.

RD-2030 Modal Transient Dynamic Analysis of a Bracket

Interactive Tutorial demonstrating how to perform modal transient dynamic analysis using RADIOSS.

HM-3200 Tetrameshing

Interactive Tutorial demonstrating the creation of a tetramesh.

OS-2070 Topology Optimization of a Reduced Model Using DMIC

Interactive Tutorial demonstrating how to reduce the finite element model using static reduction and also how to perform topology optimization on that reduced model.

HM-1010 Opening and Saving Models

Interactive Tutorial demonstrating opening and saving models.

HM-3100 AutoMeshing

Interactive Tutorial demonstrating automesh functionality.

HM-2000 Importing and Repairing CAD Models

Interactive Tutorial demonstrating CAD geometry import and repair tools.

Application of HyperWorks in the Subsea Oil and Gas Industry

The volatile nature of deep sea installations presents a difficult challenge for engineers to create products which can withstand extremely high pressures in a variety of weather conditions. Duco selected HyperWorks to model subsea umbilicals, resulting in improvements to their analysis productivity allowing models to be constructed faster than before.

HyperWorks at B/E Aerospace: Lighter, Safer Seats for Airline Passengers

When you settle in for a flight on a major airline, you are probably in a seat and surrounded by equipment designed and built by B/E Aerospace. With design and manufacturing facilities across the globe, B/E Aerospace is the leading manufacturer of cabin interior products for commercial and private passenger aircraft. One of B/E Aerospace’s leading products is its line of commercial and business airline seats. These seats are engineered and tested at its Commercial Airplane Products Group in Winston-Salem, North Carolina.

Application of HyperWorks in the Subsea Oil and Gas Industry

The volatile nature of deep sea installations presents a difficult challenge for engineers to create products which can withstand extremely high pressures in a variety of weather conditions. Duco selected HyperWorks to model subsea umbilicals, resulting in improvements to their analysis productivity allowing models to be constructed faster than before.

Injecting Innovation in Performance Engine Design with Altair HyperWorks

MAHLE Powertrain outsourced model generation of large complex parts such as heads and blocks to low cost countries to ensure sufficient mesh quality could be produced for their automotive engine designs. The third party’s improved capabilities proved valuable but ultimately MAHLE Powertrain wished to bring the process back in-house to maintain control and reduce external expenditure. To achieve this a new pre and post-processing solution was needed. HyperWorks was selected as the new platform as it afforded the required increase in productivity through its automatic mesh creation and batch processes.

Intelligent Rendering Is in the Animation Pipeline

An intuitive interface for render farm management enables a global animation studio to harness the power of highperformance computing.

Wind Turbines Take a Technical Spin at Generating Electricity

Wind turbines convert kinetic energy into mechanical power. In use for centuries, they have harnessed the power of the wind to pump water, grind grain and generate electricity. While their popularity has peaked and ebbed over the years, interest in wind turbines to generate electricity is again gaining momentum. As an alternative to fossil fuels, wind energy is seen as a viable way to produce energy while reducing global warming and pollution.

PBS Professional at Chrysler: Managing 250,000 Simulations a Year

The people who design cars and trucks at Chrysler have been using computer simulation tools since the 1980s. Since those early beginnings, the use of computer-aided engineering and finite element analysis has expanded to become the powerhouse enabler for Chrysler designers that it is today.

Managing 30 Teraflops of Compute Power: PBS Professional at Italy’s CILEA Consortium

With 30 teraflops of peak computing power, it has ranked as high as 135th among the Top 500 high performance computing centers. PBS Professional keeps CILEA’s processors humming.

OptiStruct Technology Application in Early Concept Design Stage Enables Weight Reduction of Cast and Forged Parts

Using Altair OptiStruct, India based Ashok Leyland was able to reduce cost and improve reliability of the components in their stride towards design an development of innovative, optimal and robust design solutions. Leveraging OptiStruct's technology was able to take quick and reliable design directions on the track rod lever.

HyperForm Sheet Metal Forming Solution Provides Yield Improvement of Wheel Housing and Wheel Arch

Using Altair HyperForm, Mark Auto was able to significantly improve the material utilization for their existing production dies. Mark Auto re-designed two existing dies for wheel arch an wheel housing and was able to dramatically reduce material scrap with minimum rework in their tools while not compromising on component quality.

OptiStruct Cuts Development Time to Design a Light Weight and More Durable Window Regulator Lift Plate at ArvinMeritor

Using Altair OptiStruct, ArvinMeritor was able to design a lighter weight window regulator lift plate which eased assembly. The new snap-fit design reduced the material compared to original design, without sacrificing performance and durability.

Product Development Success Hinges on the Pursuit of Innovation

Introducing simulation tools into the design and manufacturing process has enabled Multimatic to transform innovative ideas into patented products.

Brushing Up on Product Functionality

Simulation and innovative product development go hand-in-hand at the Lion Corporation.

Full Speed Ahead on Welding Analysis

Simulation enables shipbuilders to automate welding procedures – saving time and money.

Biomedical Research at the Scripps Clinic: Modeling Orthopedic Implants with Altair HyperWorks

Every year, countless people — regardless of their age or level of physical activity — begin to experience the effects of osteoarthritis, a degenerative joint disease. As we age, the cartilage that cushions the joints begins to deteriorate. The head of the adjacent bones begin to break down from the friction, causing pain in the joint. When the condition worsens and non- surgical remedies are exhausted, surgeons may recommend joint replacement. Typically, titanium alloy implants are lined with plastics that act as cartilage and are fixed in place with cement or screws by the surgeon. The implants can give patients a new lease on life, dramatically reducing pain and improving mobility. However, questions naturally arise in the patient’s mind: How much range of motion will I have in the new joint? How much strength will I recover? And how long will the new joint last?

RADIOSS: A cost-effective, powerful replacement for NASTRAN

Altair’s structural analysis code RADIOSS can be used as a direct replacement for NASTRAN. RADIOSS will accept any NASTRAN input data and will output analysis results in PUNCH and OUTPUT2 formats. RADIOSS is a modern FEA code that provides better model checking, more accuracy, and increased ease of use through clear and understandable error and warning messages. These advantages, coupled with its integration into HyperWorks and Altair’s outstanding customer support, make RADIOSS a low cost, yet superior, replacement for NASTRAN. <br><br> The view this recording you must have the WebEx Player installed. To download the Player <a href="http://www.altair.com/html/en-US/webex_player/atrecply.msi" target="_blank">click here</a>.

Advanced Finite-Element Modeling Techniques

Getting the Most From HyperMesh

Shape Optimization of a Cylinderhead Gasket using HyperMorph

A mesh model of the water jacket of a certain engine is to be optimized by modifying the shape and topology of the gasket holes that connect the head and block parts

Fininte-Element Analysis of an Automatic Door Structure to Improve the Design Processes and Meet Customers’ Quality Expectations

The paper provides the overview of the main influences on the door quality and the methodology for design evaluation via finite element approach. The door design is treated as a separate product where focus is subsequently put on the integration aspect.

Paulstra’s Use of HyperWorks to Optimize Designs and Reduce Development Time

The combined tools within HyperWorks have allowed Paulstra to move away from the trial and error design method.

Accelerating Product Development through Process Automation



HyperView Automation for Post-Processing Cell Phone Drop Simulations

The cell phone design cycle within Motorola has matured to the extent that it is standard operating procedure to analyze several concepts of a specific model before physical parts are ever made. With the use of HyperWorks tools and the speed of current compute systems, pre-processing and number-crunching are no longer the bottlenecks in analyzing full assemblies during drop situations. The most time-consuming part of the analysis cycle for drop simulations has become post-processing. It is common in the analysis cycle to look at the results of 10 or more drop orientations for each concept. Each cell phone assembly is large enough that it manually takes a half- to a full day — depending on the drop orientation — to look at all the parts of interest. By teaming with Altair, HyperView has been customized to automatically produce a web-based report for a drop orientation in about 45 minutes. The report can be accessed by any member of the design team and provides a much quicker method for focusing on the critical components that need attention.

From Incremental Change to Full Design/Validation Leap: A Multidisciplinary Approach to Optimize Safety and Crash Performance

Heavy-duty mining trucks at Hitachi are designed to meet ISO ROPS and FOPS safety requirements, while structures must be as lightweight as possible. The presentation will discuss Hitachi’s design and simulation approach, which consists of an integrated multidisciplinary analysis process. Dynamic analyses, multibody dynamics simulations, including flexible bodies and dynamic simulations are methods applied to optimize performance and vehicle safety. The author will present examples such as the optimization of a trolley support structure, a kinematics model of a 100-ton truck and the analysis of a trailing arm. Finally, the author will share his thoughts on the important subject of how simulation can better impact the design.

A Procedure for Performing Tube Hydroforming Simulations

Tube hydroforming simulations can be challenging to perform due to the multiple forming stages involved and the shape variability between those stages. A step-by-step procedure will be presented to approach tube hydroforming projects. The author will also present tips for solving hydroforming simulations using LS-Dyna3D. The tube-bending macro within HyperForm will be leveraged, along with other capabilities within the HyperWorks suite. Some aspects of accurate material representation in hydroforming simulations will also be discussed.

CAE Process & Data Management Using Altair Hyperworks Solution

Computer-aided engineering plays a significant role in the product development process. However, with the growth in the number of simulations performed, and in the absence of process and data management tools to track these simulations, inefficiencies start creeping into the CAE process. Altair Data Manager (ADM) is a pioneer tool in addressing this need. With this insight, the CAE group at Eicher Motors Ltd. decided to implement the ADM tool before process management and data migration became a Herculean task. Eicher CAE users wanted the ADM system to help them manage the complete CAE process and improve CADCAE integration. That included automated assembly buildup of batch-meshed components; automated part library buildup; analysis iterations management; faster and consistent report extraction; centralized data storage without any data duplication; and efficient sharing of results and reports across the organization.

Sheet Metal Transfer Simulation Using Altair HyperDieDynamics

The sheet metal part transfer process in high-volume transfer press is a critical phase of stamping manufacturing operations. Thus, understanding the dynamic behavior of sheet metal during transfer from die station to station becomes an urgent task in the tooling design phase. The goal is to achieve optimum transfer motion design, avoid high-cost equipment damage and improve production uptime. The newly developed Altair HyperDieDynamics is a unique tool to analyze sheet metal transfer dynamic behavior through its intuitive graphic user interface and engineering intelligence. By introducing the flexible body property and the virtual model of the stamping press line, users can easily conduct a panel transfer dynamic analysis with MotionSolve, and visualize the in-motion blank deflections, accelerations and resultant forces. It is also a useful analytical tool to improve automation tooling design and transfer motion operational parameters.

PBS Professional at National Institute of Health

Twenty-seven institutes and centers make up the National Institutes of Health. Many of their acronyms, listed on the NIH website (nih.gov), can be as mysterious as hieroglyphics: NHGRI, NIGMS, NIAMS. Others, such as NCI (National Cancer Institute) and NIMH (National Institute of Mental Health) are familiar to most of us. By any name or acronym, this cluster of organizations in Bethesda, Maryland is a major force in health sciences research.

Altair HyperWorks Helps Joe Gibbs Racing

Using OptiStruct from the Altair HyperWorks computer-aided engineering (CAE) suite of software tools, Joe Gibbs Racing was able to significantly redistribute vehicle mass and improve ride handling characteristics to design a more competitive race car.

The Automatic Calibration and Robustness Assessment of a Complex Engineering Component: Airbag Inflation

This paper describes the application of new technology to achieve automatic calibration and assess the robustness of an airbag inflation model. Calibration of the kinematic response of the airbag is achieved by defining the activity as an optimisation problem. The objective is to minimise the error between the experimental test and numerical simulation curves. Once calibration has been achieved, a unique robustness assessment is performed, which utilises the optimisation technology used in the calibration exercise.

Topology Optimization of Aircraft Wing Box Ribs

This paper considers the application of conventional energy based topology optimization methods for design of aircraft wing box ribs. Compared to standard topology optimization work undertaken at Airbus, the topology optimization of wing box ribs posed several additional challenges, mainly due to the wing box ribs being embedded in a redundant wing box structure. Several approaches to solving this problem have been investigated and are being reported as part of this paper, including a global analysis/optimization approach and two local analysis/optimization approaches.

Predicting the Dynamics of Mechanical Systems in the Automotive Industry

The application of CAE tools to help design and develop mechanical systems in the automotive industry is a widely accepted practice. This paper highlights various applications of these tools, in particular, the application of MotionView and MotionSolve from Altair Engineering. Each example demonstrates the advantages of using such tools to work rapidly and seamlessly within the general design process. This results in the development of innovative designs to face challenging problems in a short time frame.

Optimisation Techniques Leading the Development of a Steering Wheel

The early application of structural optimisation in the design of automotive components streamlines the design process and at the same time significantly increases the potential of the final design achieving maximum performance. This paper details the use of optimisation techniques during the development of a steering wheel, to generate an optimised design for cross attribute performance. This was completed in the Altair HyperWorks environment as Altair HyperMesh combined with Altair OptiStruct enables the creation of a parametric model with a multitude of design variables (i.e. size, shape, displacement, stress and frequency) in order to satisfy NVH, manufacturability, durability and crash targets.

The Complete Package: Applying Altair's Technology Process to Reusable Packaging Design

This paper demonstrates the flexibility that Altair technology provides throughout the design process with tools applicable to all stages. An overview of the LINPAC design process incorporating Altair's technology is given together with examples of how and which tools are being implemented. The limitations of the traditional LINPAC approach and the use of Altair's tools is demonstrated through the use of a detailed example; without the use of Altair technology, more iterations in expensive tool modifications would have been required to achieve a satisfactory design without introducing unacceptable costs.

Design Optimization Applied to the Development of an Oilfield Bistable Expandable Sand Screen

This paper will cover the design, development, and testing of an expandable sand screen using bistable cell technology. In addition, the design and development of the proprietary expandable connection will be presented. The testing presented covers a wide range of structural integrity, expansion, sand retention, mudflow, and geomechanical tests performed on the screen, base pipe, and connection.

Driving Million Dollar Savings at Ford using Structural Optimisation

The automotive business is a very competitive industry and in today’s markets, leading manufacturers are keen to find ways of reducing costs without compromising either quality or performance. This paper will cover the process of applying OptiStruct software to the re-development of a high volume and high cost plastic PAS (Power Assisted Steering) pump bracket into a much cheaper aluminium alternative. The outcome of this was a lighter, stiffer and cheaper replacement bracket that had the potential, based on the current production engine volumes, to save Ford Motor Company over $1.1 million a year.

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

This paper details the application of a specialised genetic algorithm to reduce the mass of a laminated composite wing rib. The genetic algorithm has been customised specifically to optimise the performance of polymer-laminated composites. The technology allows the mass to be minimized by the removal or addition of plies of various discrete orientations whilst satisfying the structural intent of the component. For the rib structure assessed, the structural constraints consist of limits placed on the displacement, stress (i.e. ply failure index) and buckling behaviour.

Simulating the Suspension Response of a High Performance Sports Car

The use of CAE software tools as part of the design process for mechanical systems in the automotive industry is now commonplace. This paper highlights the use of Altair HyperWorks to assess and then optimize the performance of a McLaren Automotive front suspension system. The tools MotionView and MotionSolve are used to build the model and then carry out initial assessments of kinematics and compliance characteristics. Altair HyperStudy is then used to optimize the position of the geometric hard points and compliant bush rates in order to meet desired suspension targets. The application of this technology to front suspension design enables McLaren Automotive to dramatically reduce development time.

Design Development of a New Consumer Personal Care Product Pack Driven by Optimization

Packaging designers must constantly inject innovations to attract consumers in a constantly evolving and highly competitive market. Keeping ahead of the competition by bringing new and exciting products to market fast, and at the necessary level of quality, presents a major engineering challenge. A new deodorant pack development process is described, which introduces advanced simulation and optimization technology into the concept development phase. Detailed predictions of interacting parts in a mechanism assembly are made possible through use of advanced simulation technology. Design optimization is then employed using the modelling as a virtual testing ground for design variants. The approach provides clear design direction and helps to improve performance and reduce uncertainty in the development process.

Simultaneous Robust and Design Optimization of a Knee Bolster

This paper introduces a practical process to simultaneously optimize the robustness of a design and its performance i.e. finds the plateau rather than the peak. The process is applied to two examples, firstly to a composite cantilever beam and then to the design of an automotive knee bolster system whereby the design is optimized to account for different sized occupants, impact locations, material variation and manufacturing variation.

Simulation of Automotive Exhaust Noise Using Fluid Structure Interaction

Modelling the exhaust impingement noise is non trivial exercise. It requires a FSI (Fluid Structure Interaction) simulation. Furthermore, sufficient resolution of the local turbulence, complicated by the varying gas temperature and often complex geometry is necessary. The feasibility of modelling this phenomenon using RADIOSS CFD, a commercial code with both FSI and CAA (Computational Acoustic Analysis) capability has been investigated in this paper. A single skin manifold was modelled with flow boundary conditions obtained from a 1D engine simulation code. Engine test bed measurement in a semi-anechoic cell were compared with the prediction, and good correlation achieved. The method adopted provides support at an early stage in the development process.

Step Change in Design: Exploring Sixty Stent Design Variations Over Night

Traditionally, computer analysis has been used to verify the structural performance of a proposed stent design. The stent deployment process consists of multiple stages (e.g. crimping, springback, expansion etc.) which is highly non-linear inducing material plasticity and load transfer via component contact. A single structural verification assessment would require a couple of days to compute on a PC. This paper investigates how recent developments in Computer Aided Engineering (CAE) and computer hardware combine to facilitate the rapid exploration of many stent design variations. It is demonstrated that by utilising these technologies, over sixty stent design variables can be assessed overnight provides valuable design sensitivity information and an optimum stent geometry configuration. On an example baseline geometry considered the radial stiffness was significantly enhanced with an improvement in structural performance. This represents a step change in the CAE assessment of a stent design.

Delivering World Class Chassis Design

This paper details the extensive use of CAE optimisation technology at ThyssenKrupp Automotive Tallent Chassis Ltd (TKA). There are a number of trends in the automotive business that are presenting great challenges, these include severe cost pressures from OEM’s, platform commonisation and reduced vehicle development cycle time. The use of optimisation is critical for TKA to maintain its competitiveness, this paper deals with more advanced concepts of optimisation by extending into the severely non-linear region of analysis types.

Development of a Wingbox Rib for a Passenger Jet Aircraft using Design Optimization and Constrained to Traditional Design and Manufacture Requirements

The application of optimization technology is becoming increasingly widespread throughout the aviation industry, exploiting the potential to design lighter aircraft. This paper details the application of optimization techniques to reduce the mass of an aircraft wing component when optimization is used at the design initiation stage of the process. Altair OptiStruct provides an optimization toolkit to determine the most efficient load path for various constraints, then allow the designers to size the components based on the enveloping load cases. Applying this optimization technology into Bombardier existing design process enabled a saving of approximately 10% on the mass of the component.

UK Niche Vehicle Industry Joins the CAE Fast Lane

0-60 in 3 seconds! That’s fast, but it takes less than a second to be involved in an accident. This paper describes how Kent-based niche sports car manufacturer, Caterham Cars used Simpact and the Altair CAE toolset to help them radically improve the crash safety of their Seven sports car. The RADIOSS non-linear solver within HyperWorks was used to develop a new safety steering system. The project successfully concluded with the new design being certified experimentally under ECE-R12 and approved by the VCA.

A New Approach to Optimizing the Clean Side Air Duct Using CFD Techniques

An integrated approach to CFD design optimization is proposed. It consists of taking an initial CAD design, meshing it using HyperMesh, analysing it using Star-CD, parameterising its key features using HyperMorph, and then shape optimizing it using HyperStudy. This approach has been applied here to the shape optimization of the compressor inlet duct of a turbo system.

Rapid Design Exploration to Determine Feasible FPSO and Spar Systems

The riser design process is well established and uses verified simulation tools to predict response to environmental loading. Design optimization is an established technology which has been widely used in other industry sectors including aerospace and automotive. Riser systems show inherently non-linear sensitivity to applied loading and parametric changes. For this reason response surface methods are required for optimization. The paper discusses two example riser configuration design problems and describes integration of Altair HyperWorks design optimization technology with the existing design process. The optimization proved to be efficient and repeatable. The designs produced for each configuration proved to be strong improvements over the baseline starting points and the wealth of information on sensitivity provided deeper understanding of the factors influencing design performance.

Targeting Composite Wing Performance – Optimum Location of Laminate Boundaries

This paper investigates the application of newly available optimization functionality available in OptiStruct to provide design guidance to generate innovative laminate composite solutions. Due to the flexibility of laminate composites, it has great potential to exhibit displacement characteristics that could significantly increase the aerodynamic performance. Free element sizing technology is used to determine concept lay-up solutions. These solutions determine the laminate make-up, thickness and the various laminate boundaries of an aircraft wing covers under multiple loading conditions which meet the required displacement targets whilst also minimising mass. These preliminary studies demonstrate that the technology can successfully achieve displacement targets for multiple load cases. Each analysis study can be completed within minutes and consequently can be utilised as a valuable concept design tool.

A Holistic Virtual Design Process Applied to the Development of an Innovative Child Seat Concept

There is a need to minimise product development costs and provide efficient design solutions to maintain competitiveness, so increasingly companies in the Child Restraint System (CRS) industry are turning to Computer Aided Engineering (CAE) to enhance the design and development for their products. Graco has worked with Altair Engineering to develop a group 1 CRS using an advanced CAE driven design process. The design process introduces a number of key phases in the design cycle each of which are positioned to maximize the efficiency of the structure and reduce or remove the cost involved in a traditional, iterative ‘test it and see’ approach.

HyperForm Improves Accuracy and Robustness of Tool Design and Manufacturing Process at Summit Auto Body (SAB)

HyperForm Improves Accuracy and Robustness of Tool Design and Manufacturing Process at Summit Auto Body (SAB) Leveraging HyperForm’s sheet metal forming solution, SAB designed the validation process and press tool design covering the vital areas of virtual prototyping/testing, which, in turn, reduced the time-consuming manual process drastically.

Programmable, Open-Architecture HyperWorks Helps Toshiba Design Smaller Hard Disk Drives to Meet Market Demand

Toshiba Digital Network Company, faced with increasing global competition in the hard disk drive (HDD) marketplace, set out to create an advantage through the redesign of their existing HDD product(s). To support this effort, Toshiba partnered with Altair Engineering to automate its design process. This was accomplished by leveraging HyperWorks powerful modeling, visualization and optimization software applications with Toshiba’s proprietary solver for fluid dynamics. The specific goal was to optimize the air bearing surface (ABS) of the HDD’s magnetic head slider. This unique product development process resulted in minimizing the flying height as much as possible while considering its stability. This, in turn, reduced the overall size of the HDD and increased its recording density. In addition, the new design was brought to market in significantly less time than with Toshiba’s traditional design process.

HyperWorks Tailors CAE Processes to Reduce Cell Phone Development Time at Motorola

Using HyperWorks, Motorola significantly reduced CAE cycle time by automating the process of input deck generation and results evaluation. By deploying HyperWorks’ process automation engine, analysts created a customized solution to simulate cell phone models more quickly.

HyperWorks Process Manager Delivers Productivity and Quality Gains to Chassis Design Process

Using Altair HyperWorks Process Manager, M&M was able to implement best practices through standardization of CAE processes and minimize CAE analysis set-up time. Automated post-processing enabled through Process Manager facilitated a 40% reduction in time when compared with the manual practice of post-processing.

The Altair HyperWorks Suite Speeds Development of Lightweight Alpine Trains

Stadler Rail is a dynamic company in a dynamic industry. With 2,000 employees at six European locations, Stadler produces light rapid-transit trains and streetcars for regional and local railroads, and is the leading supplier of cars to the cog railway market. The company uses modular, scalable concepts to design customer-oriented solutions, targeting specific needs. The Static/Dynamic/Certification Department, which creates CAE simulations of Stadler's CAD railcarmodels, used Altair's HyperWorks Engineering Framework to develop the Glacier Express, a lightweight train that carries passengers over a breathtaking route through the majestic Alps. HyperWorks tools enabled the department to move quickly and efficiently through the development process.

HyperWorks Cuts Design and Prototyping Costs for Truck Cabin Development and Testing

Using HyperWorks, Eicher Motors was able to significantly reduce the number of physical tests during the development process of their truck cabins. The numerical simulation helped in predicting the failure mode and estimating the stress level in the individual components in elastic as well as plastic zone prior to the first physical test.

Dialing into Simulation to Streamline Cellular Phone Development

Upstream model simulation reduces product development time and enables Motorola to meet critical market demands.

Validation Ensures Trains Are on Track to Meet European Safety Standards

Numerical simulation aids in the design of passive safety systems to minimize passenger injury during railway accidents.

Fine-Tuning 300-Ton Haulers: HyperWorks at Hitachi Truck Manufacturing

Hitachi Truck Manufacturing sought ways of reducing materials costs for its mammoth mining trucks, while remaining within standard specifications. The company's first project using HyperWorks CAE tools enabled Hitachi to do this with accuracy. HyperWorks is now an integral part of the design process at Hitachi.

HyperWorks CFD Optimization Helps MTU Improve Diesel Engine Compressor Blade Performance

To increase turbo charger efficiency, global diesel engine supplier MTU Friedrichshafen GmbH combined Altair’s HyperWorks computer-aided engineering (CAE) software suite with a computational fluid dynamics (CFD) solver. Combining the morphing capabilities of HyperMesh (the pre-processor for finite-element [FE] analysis and CFD) with HyperStudy (the solver-neutral design study and optimization tool), MTU redesigned the shape of the compressor blades to improve pressure gain and efficiency. The redesign, in turn, increases the fuel efficiency of the engine.

Optimization Methods Land Results in ExoMars Project

Sophisticated simulation tools enable aerospace engineers to study the feasibility of airbag landing systems.

Rotorcraft Design Takes Flight

Optimization tools enable Boeing to balance form and function in the development of advanced aircraft.

CAE in the Nanotech-enabling World

Zyvex engineers use finite-element analysis to build microscopically small devices.

Creating a Virtual Press to Optimize the Extrusion Process

Today's advanced computational tools increase productivity and quality, as well as lower energy consumption in the design and fabrication of extrusion dies.

Optimizing Aircraft Structures

Optimization technology and methods for the innovative design of efficient civilian and military aircraft.

Smart Product Packaging Pays Off

Our experts examine the challenges, advancements and trends that are changing the product packaging industry.

Simulation Links Welding Data to Structural Analysis Models

A robust modeling process greatly aids the design of lower cost and higher quality welded structures.

Putting Simulation Muscle Behind a Sporty Concept Car

Optimization technology delivers innovative suspension design for Alfa Romeo's sleek concept car.

HyperWorks at Wagon Automotive: Speeding Development Time While Cutting Prototype Costs

Wagon Automotive, a system and module supplier of components to major car builders, sought ways to accelerate product development and reduce prototyping costs while maintaining high quality. Adopting the HyperWorks suite of advanced CAE tools enabled the company to achieve both those goals. Wagon Automotive now uses HyperWorks during the entire development cycle, from concept design to optimization.

HyperWorks CAE Process Automation Accelerates Product Development at Scania

Scania chose HyperWorks – the Engineering Framework for Product Design – to automate the assembly process of virtual truck models for finite-element (FE) simulations. The new process significantly increased simulation efficiency and robustness, which are especially critical to Scania’s truck-customization process.

HyperForm Sheet Metal Forming Simulation Solution Provides Product Design Optimization of Panel Front Dome

Using Altair HyperForm sheet metal forming simulation software solution, India based Mahindra & Mahindra was able to arrive at an optimum product (BIW Part) and tooling design. The Draw Shell was simulated using HyperForm to evaluate different tooling options.

OptiStruct Drives Weight Reduction in Commercial Aircraft: Door Support Arm Design Optimization

Using OptiStruct topology and shape optimization tools, Eurocopter created an innovative new design of a door support arm for the Fairchild Dornier 728 aircraft. The company achieved a weight reduction of approximately 20 percent, using structural optimization techniques as an integral part of the design process.

PBS Professional at Toulouse Genopole

The Toulouse Midi-Pyrénées Genopole, a research program set up in 1999 in southern France by the French Minister of Research, is part of the massive French research initiative known as the National Genopole Network. The genopole name is metaphoric. It brings to mind a magnetic pole that attracts researchers and entrepreneurs to the potential of genomic research. And it is working: the initiative has drawn together, at seven locations across France, a symbiotic mix of public laboratories, biotech companies, and educational institutions. The genopoles stimulate genomics research and may provide an incubator for biotech enterprises.

HyperWorks Cuts CAE Modeling Time by Up to 50 Percent at Dunlop Aerospace

Using HyperWorks for the creation and modification of complex finite-element meshes, Dunlop Aerospace was able to dramatically cut modeling time. The software’s stability, ease-of-use and superior technical capabilities for HEX meshing contributed to the successful deployment.

Accelerating Product Development at the Nanotech Level with Altair HyperWorks

In addition to looking for a way in which to reduce product development time through simulated modeling and analysis, Zyvex Corporation wanted to be able to communicate the features and value of its MEMS product more effectively to internal and external audiences. Using the Altair HyperWorks computer-aided engineering (CAE) framework for product design, Zyvex not only accomplished its goal to significantly speed time to market, but also used HyperView’s visualization technology to prepare informative compact slide and PowerPoint presentations on the nanotechnology to various stakeholders, including Zyvex management and potential investors.

HyperWorks at Changchun Railway Vehicle Co., Ltd.: Accelerating Design and Analysis of High-Speed Railcars

Asia's largest railway vehicle manufacturer, Changchun Railway Vehicle Co., Ltd. (CRC), was looking for ways to increase development efficiency through streamlined CAE processes. By implementing HyperWorks, Altair's engineering framework for product design, CRC was able to reduce modeling cycle time by up to 50 percent. In addition, simulations were more accurate as a result of better model quality.

Tailoring CAE Modeling Processes to Reduce Cell Phone Development Time

By using HyperWorks' process automation engine, Motorola was able to reduce time for modeling and post-processing of cell phone finite-element models by as much as 90 percent.<br><br><i><b>Download available to registered Clients only</i></b>

Application of Topology, Size and Shape Optimization on the 787 Wing Leading Edge Structure

The Boeing Company extensively used OptiStruct's topology optimization technology to design fixed leading-edge wing ribs on the 787 program. As a result, the company met weight targets in a shorter period of time.<br><br><i><b>Download available to registered Clients only</i></b>

Using HyperStudy to Improve Injury Correlation in Head Drop Simulation

First Technology was able to significantly reduce development time of finite-element dummy models by applying HyperStudy's optimization method to the correlation process.<br><br><i><b>Download available to registered Clients only</i></b>

Body Durability, NVH and Safety CAE Process Automation

By applying HyperWorks' process automation to the automotive body simulation process, Ford was able to save as much as 60 percent of time per analysis.<br><br><i><b>Download available to registered Clients only</i></b>

Using Topology Optimization to determine optimal locations and designs of Terocore® structural foam automotive body reinforcements to improve vehicle NVH characteristics

Henkel used topology optimization to find the optimum areas for foam reinforcements in a automotive BIW structure to maximum bending and torsional stiffness. Henkei found that performance could be increased by as much as 25 percent.<br><br><i><b>Download available to registered Clients only</i></b>

Integration & Automation of MBS & FEA for Durability Simulation and Post-Processing

DaimlerChrysler increased productivity in suspension simulation by more than 80 percent by integrating multi-body dynamics (MBD) and durability analyses with Altair HyperWorks.<br><br><i><b>Download available to registered Clients only</i></b>

Optimization Challenges in Exhaust System Development

ArvinMeritor applied OptiStruct's optimization technology early in the development process to design an automotive muffler system. As a result, ArvinMeritor created a superior muffler design with better accoustic behavior in a shorter period of time.<br><br><i><b>Download available to registered Clients only</i></b>

HyperWorks at Sea Ray: Engineering High-Performance Pleasure Boats

For Sea Ray Boats, the leading, U.S.-based manufacturer of high-end pleasure boats, CAE simulations are an integral part of the design process to achieve shorter time to market. HyperWorks is deployed for the entire analysis process of the vessel, from modeling and simulation, to visualization and reporting. By using HyperWorks, Sea Ray’s engineers can quickly model their advanced composite structures, as well as run complex inertia relief and durability load cases.

PBS Professional at TRW Automotive: A Standard Solution for European Design Centers

As a global technology company, TRW Automotive touches most of us in ways we're unaware of. And when we drive, it is practically a certainty that a TRW system with brakes, airbags, seat belts, or steering is part of the experience. A Tier One automotive industry supplier with a focus on safety products, TRW Automotive works with almost any car and truckmaker you can name, worldwide.

OptiStruct Technology Cuts Production and Maintenance Costs of Crop Harvester Reel Assembly

Leveraging OptiStruct's topography optimization capabilities, CLAAS designed an optimal reel hub reinforcement bead pattern for a crop harvester.

Page: 1   2   3   4   5   6   7   8   9   10  11  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.