| Login


Resource Library

Keyword
GO
Categories











Industries














94 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
Surrogate Models for Antenna Placement on Large Platforms

The RF Engineering group at the Institute of High Performance Computing (IHPC), develops advanced computational electromagnetics and multiphysics algorithms and tools, leveraging vast know-how in EMC for a wide range of applications. Typical challenges include electrically-large and multi-scale EM problems such as antenna placement on large platforms, and mutiphysics problems such as the electrical –thermal–mechanical analysis of composite materials. In a project that dealt with electrically large platforms, an efficient modelling tool was required to identify optimum antenna positions and minimize interference between various antennas. FEKO was used during the development process, helping to determine the design parameters of the surrogate models using its powerful optimization function.

More Efficient and Economic Injection Mold Tools thanks to Topology Optimization, CFD Simulation and 3D Printing

Toolmaking is usually characterized by cost-intensive, custom made, single-unit production. To create innovative tools, the industry increasingly relies on new manufacturing methods such as 3D printing. To meet market demand, PROTIQ GmbH, a spinoff from Phoenix Contact needed to increase productivity through more efficient injection mold tools. The Altair solution included development of optimized tools using simulation, optimization and additive manufacturing (model setup with HyperMesh, topology optimization and FE analysis with OptiStruct, CFD analysis with AcuSolve and refinement with solidThinking Evolve. The benefits included increased productivity due to shorter production cycles, weight reduction of 75%, shortened development time and production costs reduced by 25%.

Explicit Dynamic Simulation of Tool Drop on the Outer Wing of the Swift020 Unmanned Aerial System using RADIOSS®

The successful launch of a new platform UAS is a comprehensive design engineering and manufacturing endeavor. The full lifecycle must consider maintenance and replacement components. As these requirements often require the use of tools (i.e. screw drivers, wrenches, pliers), the concern became apparent that as the flight surfaces are minimum gage, heavy tools dropped on the structure could cause irreparable damage. The objective of this project was to determine the specification for maximum maintenance tool weight such that, if dropped from a nominal height of 0.762 meters, would not cause permanent damage to any part of the Swift020 UAS. The Altair solution included a RADIOSS Explicit Dynamic Impact Simulation.

U-Shin Ltd.

U-Shin is currently employing Click2Cast to perform testing and optimization to create sound, redesigned automotive parts.U-Shin has seen significant time and cost savings by utilizing Click2Cast.

Characterizing the Murchison Widefield Array Beam Pattern

A precursor to the SKA, the Murchison Widefield Array (MWA) radio telescope was constructed in the Murchison Radio-astronomy Observatory in Western Australia. In order to correctly calibrate and image the data collected by the radio telescope, it is imperative that the beam pattern is known accurately. In this study, a rigorous approach was applied where the full array geometry was simulated using FEKO with a goal to characterize the beam pattern of the MWA and demonstrate that this approach was more accurate.

Ryerson’s International Hyperloop Team

Ryerson's International Hyperloop Team utilized solidThinking Inspire and metal additive manufacturing to redesign and produce a custom motor bracket for its Hyperloop Deployable Wheel System.

PaceControls

PaceControls developed its 3rd generation Android-based HVACR Equipment control using solidThinking Embed adding IoT connectivity and energy savings.

Woodland/Alloy Casting Inc.

Woodland/Alloy Casting is simulating and testing aluminum casting projects in Click2Cast. By running simulations in Click2Cast, Woodland/Alloy Casting can more accurately predict defect-free castings, while reducing time and cost in the overall casting process.

APEL Extrusions

APEL Extrusions employs solidThinking Click2Extrude for testing die extrusion performance. Click2Extrude allows APEL Extrusions to run numerous simulations while limiting both time and cost.

Triton Bikes

Triton Bikes utilized solidThinking Inspire to Increase performance, decrease the overall weight, and simplify manufacturability of a 3D printed custom bike rear yoke.

Use Case: KTex Family for Manufacturing

Predicting the impact of the manufacturing process on composite materials.

Use Case: OptiStruct with Moldex3D for Structure Analysis

Evaluating product design using OptiStruct and Moldex3D as an alternative to costly and time consuming mold trials.

Sintavia

Sintavia utilized solidThinking Inspire to prove the ability to additively manufacture optimized aerospace replacement parts that exceed existing part performance while decreasing the overall weight.

HyperWorks Enables Ingeniacity to Reduce Mass of Sailing Yacht Composite Bowsprit by 65%

Altair's HyperWorks Suite provided the pre-processing, optimization and FE-solving tools to help create a new bowsprit design that was 34kg lighter than the previous model

ESAComp for Aerospace

One page flyer showcasing how ESAComp can be applied for design optimization in the aerospace industry.

AMETEK

AMETEK used solidThinking Embed to development of an embedded control system for a chiller unit under a very tight schedule and high safety standards.

Texas Instruments

Using solidThinking Embed, Texas Instruments was able to develop an embedded simulation of an entire system.

Altair Offers Flexibility and Enhancement for Casting Process Design and Optimization

The goal of the project outlined in this paper is to get the optimal gating system (size and position of ingate) to help avoid porosity and other common defects in the produced parts, achieving the final design to begin casting the component.

Application of FEKO in EM Protection Design for Electromagnetic Effects of Civil Aircraft

In the limited space of a plane, a lot of radio equipment, especially antennas are installed, leading to concerns about antenna pattern distortion caused by the plane body and inter-antenna isolation. COMAC, Shanghai Aircraft Design and Research Institute continues selecting FEKO to improve the EMC performance in the developmental phase of the multiple aircraft models C919 and ARJ21.

RUAG Space Streamlines Composite Analysis with Improved Data Workflow

RUAG Space combines the power of the Altair HyperWorks Suite with the advanced composite failure analysis methods from ESAComp to improve their efficiency and composite modeling process.

Advanced Composite Material Calculations at eStress Using HyperWorks, LAP and CoDA

eStress' needed to develop a practical and generalized approach to assess the behavior of curved composite beams under corner unfolding loading for design sizing. This process shows how HyperWorks, LAP and CoDA worked together to achieve this.

The SKA Radio Telescope: a Global Project for a Better Understanding of the Universe

Challenging Einstein’s seminal theory of relativity to the limits, how the very first stars and galaxies formed just after the Big Bang, the study of dark energy and the vast magnetic fields in the cosmos, and the age old question “Are we alone in the Universe?” These are some of the key scientific goals of the Square Kilometer Array (SKA) project, led by the SKA Organization from Jodrell Bank Observatory in the UK, supported by 11 member countries.

SOGECLAIR Aerospace Employs HyperWorks to Optimize Additively Manufactured Aircraft Components: Topology optimization of a large engine pylon structure

To find new development and manufacturing approach to reduce weight while ensuring safety, HyperWorks offers SOGECLAIR Aerospace an innovative, streamlined development environment with more design freedom, faster development cycles, and lower costs. A CAE-driven design process combining topology optimization using OptiStruct and Additive Layer Manufacturing (ALM).

HyperMesh and Custom Export Template Streamline CFD Analysis in Research Projects at Arizona State University

Integrative Simulations & Computational Fluids Lab researchers from SEMTE (School for Engineering of Matter Transport and Energy) at the Arizona State University (ASU) wanted to use the commercial code HyperMesh as a general preprocessor to mesh complex geometries for use with the spectral element CFD code Nek5000. The challenge was to benefit from the rich functionality of existing meshing tools such as HyperMesh while using the Nek5000 code, since this CFD code requires 3D hexahedral elements. SEMTE researchers set up a project to develop a converter tool with which a HyperMesh mesh could be exported into a format the Nek5000 code could work with. With this export template the overall process is now much more user-friendly and less error-prone. The mesh is generated in HyperMesh and the export template organizes all the data and sorts it so it can be imported in the proper formats into the Nek5000 user template.

3D Systems

3D Systems utilized a process incorporating solidThinking Inspire to generate the ideal skateboard deck and truck material layout for a unique design now displayed at the Cooper Hewitt – Smithsonian Design Museum.

3D Printing for Innovative Mold Making Combined with Simulation Driven Design Inspiration Push the Limits for High Performance Castings

Altair, Click2Cast, HBM nCode, and voxeljet present a technology demonstration that stands out with dramatic performance improvements and the solid potential for serial manufacturing and mass production. Bringing design optimization, fatigue analysis, casting, and 3D printing together addresses the challenges of lightweight design and enables the creation of an innovative design and manufacturing process that enhances performance and efficiency.

Indian Engineering Institute CoEP Establishes CAE Optimization Center Employing Altair HyperWorks

This success story illustrates how a reputed engineering institute of national acclaim has set-up a CAE - Optimization Lab, equipped with Altair HyperWorks CAE tools, to expose their students to the latest technologies in product design, analysis, and optimization. Within the range of the CAE - Optimization Lab, CoEP has launched various courses to impart knowledge on Altair HyperWorks. This CoEP initiative bridges the gap between industry expectations and needs and the knowledge that graduating students possess. Being trained on advanced and contemporary technologies such as the HyperWorks suite has opened new opportunities for students to embark their career, has improved the national ranking of the college due to investing in a modern and robust infrastructure, and also has benefitted the industry by creating a talent pool of well-trained manpower, available to work on breakthrough engineering initiatives.

Steve McGugan Industrial Design

Award winning industrial designer Steve McGugan uses Evolve to design and model a range of unique products.

NASA Develops Wireless Sensors to Detect Lightning Strike Damage to Composite Aircraft

Computational electromagnetic software enables a team of researchers at NASA’s Langley Research Center to develop wireless resonant sensors that can measure and mitigate lightning strike damage to composite aircraft. <br><br> By Beverly A. Beckert<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

Chiller Unit Keeps Joint Strike Fighter Pilots Cool

A model-based embedded development system enables AMETEK to design, simulate, create firmware for and validate a chiller unit control system. <br><br> By Beverly A. Beckert<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

Optimization Technology: Leveraging a Solid Foundation to Innovate Better Products

Steady improvements in the OptiStruct solver platform over 20 years have enabled users to tackle increasingly complex design challenges. Now, OptiStruct in combination with 3D printing helps to achieve more efficient structural designs. <br><br> By Uwe Schramm<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

OptiStruct Plays a Key Role in the Air Wing Design for a Multi-Disciplinary, Collaborative University Capstone Design Project

The Georgia Tech Institute of Technology (Georgia Tech) took the lead in collaborating with five Universities to develop a senior-level capstone design course that would give engineering students collaborative design experience using state-of the art computational tools. The multi-disciplinary course was completed over two semesters. Students, under the direction of University professors and industrial mentors, completed a fixed-wing aircraft design.

RUAG Space - Satellite Antenna Bracket

Weight reduction is a decisive factor in the space industry, since the lighter a satellite is, the less it costs to send it into space. Since 2013, RUAG Space has been conducting intensive research and development work to investigate how to ‘print’ its components using an Additive Manufacturing (AM) process. The goal of the engineers was to take full advantage of the design freedom AM offers and to create an aluminum component that would be significantly stiffer while at the same time lighter than the original design. In addition, RUAG’s engineers also wanted to cut down design and development time to get results and the final component faster.

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics

Recent trends in wind power technology are focusing on increasing power output through an increase in rotor diameter. As the rotor diameter increases, aeroelastic effects become increasingly important in the design of an efficient blade.

Applying Optimization Technology to Drive Design of a 100-Meter Composite Wind Turbine Blade

This presentation demonstrates how numerical optimization can be applied using OptiStruct to aid in the design development of a 100-meter composite wind turbine blade.

Combining topology optimization with laser additive manufacturing reveals new potential for lightweight structures

Challenge: Development of design and optimization methods to improve components made with laser additive manufacturing methods. Altair Solution: HyperWorks, OptiStruct, Simulation Driven Design Process Benefits: increased material efficiency, lighter and stiffer structures, less user training required, flexible and adaptable manufacturing process

Failure Criteria for Stamping Analysis in RADIOSS

In this paper, several failure criteria are compared in their ability to predict necking point and failure propagation during a forming process. The paper has been presented at the 2014 IDDRG Conference in Paris, France.

HyperWorks helps ACENTISS in the development of Elias, a new electrically powered ultra-lightweight airplane

Recently, ACENTISS has developed the all-electric technology demonstrator ELIAS (Electric Aircraft IABG ACENTISS) based on the one-seater UL aircraft ELECTRA ONE from PC-AERO GmbH. To perform all the needed engineering and development work of the project ACENTISS applied Altair’s HyperWorks suite.

CAE Technology Applicable to the Aerospace Industry - JEC Reprint

In this article, published on the May 2014 issue of JEC Composites Magazine, Shan Nageswaran explains why the latest version of HyperWorks® represents the most advanced evolution of computer-aided engineering (CAE) technology applicable to the aerospace industry.

Tesla Optimizes CAE - Desktop Engineering Reprint

Automating CAE connectors creation in HyperMesh and utilizing HyperStudy for pedestrian impact simulation helped optimize Tesla’s design cycle and get better crash and safety performance.

Intel Solution Brief: Maximize Performance and Scalability of RADIOSS on Intel® Xeon® Processor E7 v2 Family-Based Platforms

This paper summarizes the findings of a benchmark study with RADIOSS and Intel® Xeon® processors. In the study, Altair benchmarked RADIOSS using a modified crash simulation model on a single-node platform -- RADIOSS was able to easily take advantage of all 60 cores, running the workload 2.75X faster than on a comparable 24-core platform.

Peter Macapia, LabDORA

Architect Peter Macapia is exploring new frontiers in architectural design; a different way of looking at the design of buildings thanks to solidThinking Inspire.

Case Study Sogeclair

Case Study about Sogeclair's use of HyperWorks Industry: Aerospace interiors Challenge: Development of new flooring concept to fix the cabin seats while realizing a lighter structure, adjustable panels for all types of aircraft, and an easier installation and maintenance. Altair Solution: Use of HyperWorks, especially HyperMesh and HyperView as a pre- and postprocessor, OptiStruct for optimization issues, RADIOSS for linear and nonlinear simulation, and solidThinking Evolve/Inspire for concept modeling Benefits:<ul><li>Saving development time and costs</li> <li>Use a new approach in the design leveraging optimization</li> <li>Reduce product weight through structural optimization of composite components</li></ul>

Success Story: HBPO GmbH Achieves Flexibility and Cost Efficiency in Automotive Development By Leveraging the APA

HBPO GmbH optimizes their design process by utilizing multiple products, such as Moldex3D, Total Materia and MADYMO, alongside HyperWorks products for the development of their front end modules.

Click2Cast & Inspire Use Case

Guide to using Click2Cast with solidThinking Inspire.

PBS Professional Drives Computational Science at Scuola Normale

PBS Professional is managing the DreamHPC cluster at Scuola Normale di Pisa, a 2600-core Dell cluster used for compute-intensive simulations requiring parallel efficiency, scalability and fast memory access.

PBS Professional Wins at NCI Raijin, Largest Supercomputer in Southern Hemisphere

Australia’s National Computational Infrastructure (NCI) chose PBS Professional to manage workload for its ‘Raijin’ cluster from Fujitsu, the largest supercomputing system in Australia with over 1000 users.

Acer and Altair Cluster Transition Guide: Scaling from Workstation to Cluster for Compute-Intensive Applications

In this guide, Altair and Acer present the business case for switching to a cluster environment, including: documented performance gains when running a sample commercial application on both workstations and clusters; recommended cluster configurations; and key considerations for choosing and deploying a professional-grade cluster.

PBS Pro at Czech National Supercomputing Center

The IT4I National Supercomputing Center uses PBS Professional to manage its new Bull cluster being shared by over 200 planned users. Center officials say PBS “provides the robust commercial functionality we need in a scheduler”

Clemson University Chooses PBS Professional for HPC Workload Management

Clemson University's IT department, Clemson Computing and Information Technology (CCIT), selected PBS Professional over open-source alternatives for mission-critical workload management. “We were looking to fulfill two requirements that our open source scheduling tool could not handle – reliability/scalability and technical support. After evaluating workload management vendors, Altair’s PBS Professional scheduling software came out on top as the solution that met our HPC needs.”

Ron Mendell

Ron Mendell is one of the most talented concept artists serving the motion picture industry.

TokyoFlash

TokyoFlash is a world leader in the design and sales of unique watches. They use Evolve to speed product development.

Novellini Group

The Novellini Group is a pacesetter in Europe in the manufacture of bathroom solutions and wellness products.

Weizmann Institute Case Study: Switching to PBS Professional for HP Clusters

The Weizmann Institute replaced Moab with PBS Professional to manage a 3,096-core HP cluster shared among hundreds of users. The transition process was easy, thanks to Altair’s excellent customer services and support. Now, the Institute enjoys higher cluster usage rates and greater productivity from their award-winning scientists.

Intel AcuSolve Case Study: Analyzing Complex Designs Faster

Working in collaboration with Intel’s technical support team and utilizing key Intel® software development tools, Altair was able to improve performance, scalability, and time-to-results for AcuSolve, Altair’s leading CFD flow solver.

The Art of Packaging to Protect Cultural Assets

Simulation tools isolate the cause of undesirable shipping loads on museum’s cultural treasures. <br><br> By Nobuyuki Kamba, Ph.D.<br> <i>Concept To Reality</i> Summer / Fall 2012 <a href="http://www.altair.com/MagazineFreeSubscription.aspx">Subscribe to C2R Magazine</a>

Innovating in the Cloud

CAE cloud computing speeds innovation and cuts bottom-line IT costs. <br><br> By Dale Dunlap and Ravi Kunju<br> <i>Concept To Reality</i> Summer / Fall 2012 <a href="http://www.altair.com/MagazineFreeSubscription.aspx">Subscribe to C2R Magazine</a>

HyperWorks in the Development of Aeronautic Sensors

Esterline Advanced Sensors offers its customers a broad range of high precision solutions for aeronautics (cockpit, airframe and engine) and derivative products for marine, defense and the industrial sector. Read the Case Study to see how HyperMesh improved FE accuracy and saved on development time and costs.

Altair Partner Alliance Offers Flexibility and Enhancements in Development Process at Manufacturer of Interconnect Products

Amphenol is one of the largest manufacturers of interconnect products in the world. The company designs, manufactures, and markets electrical, electronic and fiber optic connectors, coaxial and flat-ribbon cable, and interconnect systems. Amphenol was able to use HyperWorks and the APA to access software encompassing the entire development process, all within one platform.

PBS Professional at NASA Ames Research Center

It takes a super workload management tool to power grid, cluster and on-demand computing environments for computational modeling and simulation applications at NASA.

NASA

<b>A Safer Landing with Water Impact Analysis</b><br><br> Using Altair’s own HyperWorks virtual simulation suite, Altair ProductDesign built an accurate finite element model of the module from CAD data supplied by NASA, as well as a section of water and air which matched the conditions from the lake used during the physical tests. The effect on the module’s structure during impact was simulated to gauge how well the results correlated with the physical tests. The results showed excellent correlation between the simulation and physical tests, identifying areas where the model, input parameters and meshing methods could be improved to give a more accurate prediction of the event.

Scania

<b>Reducing the Development Cycle with Assembly Automation</b><br><br> European based heavy vehicles manufacturer, Scania, is known for its ability to deliver highly customized products. This concept creates a significant challenge for computer aided engineering (CAE) departments, as engineers must rapidly verify a number of different variants with finite element simulations. Therefore, automating the entire virtual model assembly process was a major goal for Scania. The process, which included tasks such as positioning hundreds of components, creating contact definitions and building part connections with pre-strained bolts, was time consuming and prone to error.

Using HyperWorks to Generate Electrically Large Surface Meshes for Radar Cross Section or Antenna Placement Simulation

Radar Cross Section (RCS) and installed antenna placement are important parameters for aircraft designs. RCS is a measure of how detectable an object, such as an aircraft, is with radar. A large RCS indicates that an object, such as a jet aircraft, is easily detected.<br><br> SELEX Galileo used HyperWorks to generate arbitrarily large surface meshes, with defined electrical properties at the element level, for use with electromagnetic (EM) solvers to calculate either RCS of an aircraft or to determine where to place an antenna for optimum performance.<br><br> For this case study a fast-jet aircraft with approximately 100 million mesh elements was assessed for radar tracking and avoidance capabilities.

SELEX Galileo Deployed HyperMesh to Generate Electrically Large Surface Meshes with Dielectric Regions for Radar Cross Section (RCS) or Antenna Placement

This case study describes the process by which HyperMesh was used to generate 100 million mesh elements of a fast jet, with defined electrical properties at the element level. This was destined for use within electromagnetic (EM) solvers to calculate either the RCS of the aircraft, or to determine where to place an antenna for optimum performance. This was the first time that electrical properties could be assigned to models in a GUI environment, and the process has helped SELEX Galileo designers reduce development time in creating large EM models, which will drive down the cost of design activities.<br><br>

Simulation Streamlines Aircraft Door Development

The Eurocopter Group leverages analysis to cut design time and automate the process of developing safe aircraft closures.<br><br> By Michele Macchioni<br> <i>Concept To Reality</i> Summer/Fall 2011

Bird Strike Simulation Takes Flight

The increasing number of bird-plane impacts gives rise to new CAE methods to address aircraft safety.<br><br> By Robert Yancey<br> <i>Concept To Reality</i> Summer/Fall 2011

Structural Optimization Helps Launch Space Payloads

Aerospace company employs simulation software to reduce weight in the Launch Abort Manifold for the Orion Multi-Purpose Crew Vehicle.<br><br> By Blaine E. Phipps, Michael H. Young and Nathan G. Christensen<br> <i>Concept To Reality</i> Summer/Fall 2011

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)

OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

Assystem Used HyperWorks CAE Simulation to Design, Simulate and Test Nuclear Encapsulation Vessels

Assystem is an international engineering and innovation consultancy group with a presence in 14 countries and 8500 employees. HyperMesh, RADIOSS and HyperStudy were used to design the safest possible nuclear encapsulation vessel for securely containing nuclear material. The designs not only achieved pressure vessel code PD5500 standards, but also helped Assystem gain external accreditation for the pressure vessel’s compliance to code. Download the Assystem Case Study

MIMOS Berhad Delivers HPC Across Malaysia with Cloud

In partnering with PBS Works, MIMOS Berhad brought onboard a strategic collaborator committed to help its clients overcome these limitations by deploying Altair's PBS Professional®, the industry leading commercial workload management and job scheduling solution.

FEKO Case Study

FEKO Case Study: Advanced Computational Tools for Antenna Placement Studies in the automotive, aerospace and marine industries

Improving Efficiency and Accuracy at Eaton Aerospace with HyperWorks

The Hydraulic Systems Division of Eaton’s Aerospace Group designs hydraulic components and systems on many of the world’s military and commercial aircraft in the skies today. Eaton uses Altair HyperWorks within it's simulation processes to improve solution efficiency and accuracy.

Airline Seat Testing Soars to New Heights

French manufacturer Sicma Aero Seat SA relies on virtual dynamic testing in the evaluation of its custom aircraft seats.

HyperWorks at B/E Aerospace: Lighter, Safer Seats for Airline Passengers

When you settle in for a flight on a major airline, you are probably in a seat and surrounded by equipment designed and built by B/E Aerospace. With design and manufacturing facilities across the globe, B/E Aerospace is the leading manufacturer of cabin interior products for commercial and private passenger aircraft. One of B/E Aerospace’s leading products is its line of commercial and business airline seats. These seats are engineered and tested at its Commercial Airplane Products Group in Winston-Salem, North Carolina.

Intelligent Rendering Is in the Animation Pipeline

An intuitive interface for render farm management enables a global animation studio to harness the power of highperformance computing.

PBS Professional at Chrysler: Managing 250,000 Simulations a Year

The people who design cars and trucks at Chrysler have been using computer simulation tools since the 1980s. Since those early beginnings, the use of computer-aided engineering and finite element analysis has expanded to become the powerhouse enabler for Chrysler designers that it is today.

PBS Professional at National Institute of Health

Twenty-seven institutes and centers make up the National Institutes of Health. Many of their acronyms, listed on the NIH website (nih.gov), can be as mysterious as hieroglyphics: NHGRI, NIGMS, NIAMS. Others, such as NCI (National Cancer Institute) and NIMH (National Institute of Mental Health) are familiar to most of us. By any name or acronym, this cluster of organizations in Bethesda, Maryland is a major force in health sciences research.

Rotorcraft Design Takes Flight

Optimization tools enable Boeing to balance form and function in the development of advanced aircraft.

Optimization Methods Land Results in ExoMars Project

Sophisticated simulation tools enable aerospace engineers to study the feasibility of airbag landing systems.

Optimizing Aircraft Structures

Optimization technology and methods for the innovative design of efficient civilian and military aircraft.

Simulation Links Welding Data to Structural Analysis Models

A robust modeling process greatly aids the design of lower cost and higher quality welded structures.

PBS Professional at Toulouse Genopole

The Toulouse Midi-Pyrénées Genopole, a research program set up in 1999 in southern France by the French Minister of Research, is part of the massive French research initiative known as the National Genopole Network. The genopole name is metaphoric. It brings to mind a magnetic pole that attracts researchers and entrepreneurs to the potential of genomic research. And it is working: the initiative has drawn together, at seven locations across France, a symbiotic mix of public laboratories, biotech companies, and educational institutions. The genopoles stimulate genomics research and may provide an incubator for biotech enterprises.

HyperWorks Cuts CAE Modeling Time by Up to 50 Percent at Dunlop Aerospace

Using HyperWorks for the creation and modification of complex finite-element meshes, Dunlop Aerospace was able to dramatically cut modeling time. The software’s stability, ease-of-use and superior technical capabilities for HEX meshing contributed to the successful deployment.

OptiStruct Drives Weight Reduction in Commercial Aircraft: Door Support Arm Design Optimization

Using OptiStruct topology and shape optimization tools, Eurocopter created an innovative new design of a door support arm for the Fairchild Dornier 728 aircraft. The company achieved a weight reduction of approximately 20 percent, using structural optimization techniques as an integral part of the design process.

PBS Professional at TRW Automotive: A Standard Solution for European Design Centers

As a global technology company, TRW Automotive touches most of us in ways we're unaware of. And when we drive, it is practically a certainty that a TRW system with brakes, airbags, seat belts, or steering is part of the experience. A Tier One automotive industry supplier with a focus on safety products, TRW Automotive works with almost any car and truckmaker you can name, worldwide.

PBS Professional at GE's Oil & Gas business: Putting An Engineering Cluster to Work

Next time you stop to fill your fuel tank, reflect on the fact that a company on the sunny slopes of Tuscany may have helped to make it possible. Nuovo Pignone, now a key technological component of GE's Oil & Gas business, began life 100 years ago as a foundry. Today more than 20,000 machines – turbomachinery, compressors, pumps, valves, and metering and fuel distribution equipment – manufactured by this GE business are operated worldwide by major companies to keep petroleum products moving from oil rigs to storage facilities to refineries to distribution points.

PBS Professional at Boeing: Workflow Management for R & D

The Boeing Information Technology group provides a wide range of computing services to the entire corporation from its Bellevue, Washington computing campus. For the engineers who design Boeing commercial aircraft, the heartbeat of this campus is the Data Center, which houses the high performance computing (HPC) systems that they access to run engineering simulations and analyses.

PBS Professional at Trelleborg: An Automotive Design Group Maximizes Productivity

When you look for a new car, you probably think about style, comfort, performance, economy, or innovative electronics. You won't be thinking about the kinds of parts that Trelleborg Automotive makes. But they're there, all right, mostly unsung and out of sight, and you wouldn't want to be without them. Trelleborg, a Swedish corporation with a 100-year pedigree in engineering innovation, makes molded rubber components that damp down vibration and smooth out your ride. They cushion your engine where it meets the chassis. They buffer the mechanics of your steering column and your suspension. Almost all of them do their jobs without ever seeing the light of day – but if your floor gearshift lever has a rubber housing, that housing may have come from Trelleborg.

F-35 Joint Strike Fighter Structural Component Optimization

Lockeed Martin uses OptiStruct to meet the aggressive weight targets on the Joint Strike fighter project. High potential parts for mass savings include compact fittings and planar webs.

ExoMars Rover Airbag Design and Reliability Optimization

Astrium used HyperStudy with LS-Dyna to not only optimize the landing behavior of the ExoMars lander but also to investigate the probability of failure using HyperStudy’s stochastic engine. HyperWorks’ process automation engine helped to quickly create design variations.

PBS Professional at TGen: Cutting Time to Discovery

In recent years, corporations and research institutions around the world have applied massive computational resources to defining the makeup of the human genome. One of the greatest challenges is to translate that knowledge into therapeutics and diagnostics – which is the mission of the Translational Genomics Research Institute (TGen), a remarkable non-profit organization founded by a joint effort between the State of Arizona, Arizona State Municipal Governments, Indian Tribal Community, educational institutions, private foundations and corporate entities. TGen's work is not only to make genetic discoveries, but also to translate discoveries into benefits for human health in the form of new diagnostic tests and therapies.

Ford Motor Company: Building an Efficient HPC Infrastructure

The cars, trucks, vans and SUVs that roll off Ford Motor Company assembly lines are safer, quieter, and more comfortable than ever. Many of the intangibles that contribute to Ford quality flow from the innovative use of high performance computing (HPC) techniques. At Ford's Numerically Intensive Computing Department (NIC) in Dearborn, Michigan, engineers run simulations in codes such as NASTRAN and LS-DYNA for predictive analysis of cylinder cooling, wind noise, vibration, ride quality, crashworthiness, durability, and other characteristics that contribute to industry-leading automotive design.

Optimization Assisted Design of Military Transport Aircraft Structures

EADS Military Aircraft implemented an optimization assisted structural design process and applied it to the A400M rear fuselage design.

CAVE Sets the Stage for Real-Time Collaboration

An immersive virtual environment speeds the creation of prototypes to cut time in military product development programs.

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.