| Login


Resource Library

Keyword
GO
Categories










Industries














329 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
Lighter, farther, faster, greener: TUfast Eco team drives to success with HyperWorks

For the Shell Eco-marathon, an international contest for sustainable mobility, student teams from schools and universities all over the world design vehicles that are as energy-efficient as possible. After passing a technical check, the vehicles compete for energy efficiency. In this discipline the vehicles are evaluated for the vehicle’s reach per kWh. To compete in this category, a driver with a minimum weight of 50 kg has to drive a distance of 17.9 km in less than 43 minutes. The challenge for the TUfast Eco team was breaking the world record for efficient vehicles and participation in the Shell Eco-marathon. The Altair solution included topology optimization with HyperWorks.

Use Case: KTex Family for Manufacturing

Predicting the impact of the manufacturing process on composite materials.

Use Case: OptiStruct with Moldex3D for Structure Analysis

Evaluating product design using OptiStruct and Moldex3D as an alternative to costly and time consuming mold trials.

Benefits of the Symbiosis of Topology Optimization and Additive Manufacturing in Architecture

The challenge was to investigate the potential offered by the symbiosis of topology optimization and additive manufacturing for architectural projects. The Altair solution included the use of the HyperWorks suite, especially OptiStruct for optimization tasks. The benefits were reduced construction time and costs due to decreased material usage while receiving better and more esthetic results.

Harita Seating Standardizes on Altair Suite of HyperWorks for all CAE Applications

HYperWorks used by leading Indian manufacturer of seating systems Harita, for homologation testing, regulations and crash analysis for all commercial vehicle seats, bus passenger seats and tractor & off-road seats

ABB

To support the use of simulation tools in this endeavor, ABB in Spain enlisted the help of Altair ProductDesign's regional team, thanks to the company's experience in utilizing simulation tools to solve engineering challenges in the robotics industry. The project centered on improving the fatigue performance of a Twin Robot Xbar (TRX), one of ABB’s robotic part transfer systems that moves components between manufacturing stations.

Mubea Relies on HyperWorks Unlimited™ for Automotive Component Design and Production

In performing lightweighting projects for large OEMs, Mubea is the only provider worldwide who delivers innovations of tailor-rolled blanks (TRB) which are ideal for not only vehicle body structural but also for suspension components that encounter different loads across their length. The Mubea team has worked collaboratively with Altair for over 6 years. With HWUL-PA, they are able to optimize their TRB applications more efficiently than ever before, including expanded capabilities for unlimited design exploration, reduced lead time and major cost savings over traditional hardware/software purchase

High Performance Computing Speeds-up Optimization Processes for Tailor Rolled Blanks at Mubea

OEMs and suppliers include every possible technique to support lightweighting in the automotive industry. It is common to use optimization techniques in order to identify and tab existing lightweight potentials as well as design tailor rolled components in a vehicle, the design optimization of which is normally based on crash simulations. Due to the large size of these simulations, a single run can take 1 to 12 hours. To conduct all the simulation runs needed for assessment and evaluation of different design concepts, the use of HPC is necessary. HWUL- VA was able to reduce the turnaround time for a lightweight study significantly at Mubea.

Inspired by Nature: Electric Motorcycle goes 3D - Combining Topology Optimization, New Materials, and Additive Manufacturing in the Development of the Airbus APWorks Light Rider Results in a Revolutionary Lightweight Design

The Airbus APWorks Light Rider is the world's first 3D printed motorcycle prototype. Altair OptiStruct® was used for inspiration of its organic structure. Using additive manufacturing, a simulation-driven design process approach and topology optimization during the process achieved optimum lightweight design.

CADdoctor Case Study: Arkal Automotive

Arkal Automotive Optimizes FEA Data Creation Workflow with HyperMesh and CADdoctor.

Close Hauled with Hyperworks - Student Team of Politecnico di Torino Sails Away from Competition

The project focused on the design and construction of a skiff, a particular kind of sail boat, within the given regatta regulation. With its modeling and calculation tools, HyperWorks helped the team to significantly reduce weight while increasing stiffness, while saving time and costs.

Auburn University applies HyperWorks to Optimize the Design of Composite Suspension Components and Monocoque for a SAE Formula Student Racecar

To optimize the car performance, the Auburn University SAE Racing Team focused on selected components that were most promising in terms of mass reduction with equal or increased stiffness. HyperWorks enabled them to reduce component mass-to-stiffness ratio, thereby improving car performance, speed up development time, as well as grow in knowledge of composite material design and optimization

Whitepaper: A Design-Validation-Production Workflow for Aerospace Additive Manufacturing

Additive manufacturing coupled with topology optimization allows the design-and-analysis and manufacturing iterations to be reduced significantly, or even eliminated. To ensure that the part will perform as simulated, a mid-stage validation is conducted on a standardized part before creating the final products.

HyperWorks Enables Ingeniacity to Reduce Mass of Sailing Yacht Composite Bowsprit by 65%

Altair's HyperWorks Suite provided the pre-processing, optimization and FE-solving tools to help create a new bowsprit design that was 34kg lighter than the previous model

Mabe

The consumer goods industry is fast paced and highly competitive, with designs becoming increasingly complex while the timeline for production shrinks. Companies like Mabe must innovate and develop new products quickly in order to remain on the consumer radar, and conducting various analysis studies on their designs helps them to do so. This project addresses the tedious and time consuming task of modeling the foam within the product door that helps maintain the internal temperature and also absorbs shock in a drop situation. Modeling the foam effectively is complex and difficult due to the complicated nature of the doors and other cavities, so the step was often skipped, causing inefficiencies with the product.

Success Story: OHB System AG

HyperWorks and the Altair Partner Alliance Streamline Development Process of Optical Satellite Components at OHB System AG.

APWorks Choses OptiStruct for Topology Optimisation for the 3D Printed Light Rider

Despite its skeletal appearance, the Light Rider is an extremely strong yet lightweight electric motorcycle designed by Airbus subsidiary APWorks as a showcase of what’s possible when OptiStruct's topology optimisation is coupled with metallic 3D printing. Written by Tanya Weaver from DEVELOP3D.

Using Topology Optimization with solidThinking Inspire for Improved Casted Rail Compoments

A simulation driven approach was taken using solidThinking Inspire for topology optimization, Evolve for shape refinements and HyperWorks for FE analysis for the optimization of an existing component design to be manufactured with casting/AM technologies

A Vision of Tomorrow's Architechture: Designing the LAVA Bionic Tower

Exploring design variants with OptiStruct's FE-based topology optimization to generate a free-form exoskeleton structure

Top Use Cases: Mechanical Simulation

Presentation introducing a few of the top use cases for the vehicle dynamics simulation software, CarSim, BikeSim and TruckSim.

Achieving Superior Crash Performance for the Souest DX7

Analysis and optimization to improve crash performance while reducing reliance on physical tests.

Optimization-driven Product Development at Volvo

Harald Hasselblad (PhD) - Senior Analysis Engineer at Volvo Car Group Sweden - talks about introducing an Optimization Culture Arena to support simulation driven development in his company.

Biberach University of Applied Science, Institute for Architecture and Urban Development

Create modern, functional, stiff, and light architectural designs. Altair OptiStruct used to create feasible designs

ESAComp for Aerospace

One page flyer showcasing how ESAComp can be applied for design optimization in the aerospace industry.

AMETEK

AMETEK used solidThinking Embed to development of an embedded control system for a chiller unit under a very tight schedule and high safety standards.

HyperWorks Becomes Part of Mechanical Engineering Curriculum at Dalhousie University

As a key industry tool, HyperWorks becomes part of the Curriculum, providing hands-on training to Mechanical Engineering Students at Dal

Texas Instruments

Using solidThinking Embed, Texas Instruments was able to develop an embedded simulation of an entire system.

Robot Bike Co.

Developing a Fully Customizable, Additively Manufactured Mountain Bike

Altair Offers Flexibility and Enhancement for Casting Process Design and Optimization

The goal of the project outlined in this paper is to get the optimal gating system (size and position of ingate) to help avoid porosity and other common defects in the produced parts, achieving the final design to begin casting the component.

Implementing CAE into the Design Process for Composite Tennis Racquets at Wilson Sporting Goods

Wilson Labs, the innovation hub at Wilson Sporting Goods, leveraged OptiStruct and Altair ProductDesign for composites finite element analysis to reduce design cycle time and enhance product value.

Hyundai Mobis Automotive Group Improves the EMC Analysis Process from 2D to 3D Using FEKO for Shielding Effectiveness Simulation

To analyze and optimize the shielding effectiveness of the housing in an Around View Monitor (AVM) while meeting EMC requirements, Hyundai MOBIS automotive group improves the Electromagnetic Compatibility Analysis (EMC) process from 2D to 3D using FEKO for shielding effectiveness simulation

Airbus Helicopters

Airbus Helicopters Weight & Balance (W&B) team is tasked with collecting and analyzing data to forecast the weight of a product during the conceptualization phase. Collecting useful and up-to-date data in a standardized way from this wide group of stakeholders was proving to be a challenge for the W&B team, slowing down both the interrogation of data and the resulting decision making. With the manual upload of data, there was no way to create a standardized report that could be updated in real time, either internally by the different product development departments or externally by suppliers. These were the problems Altair was tasked with creating a solution for.

Application of FEKO in EM Protection Design for Electromagnetic Effects of Civil Aircraft

In the limited space of a plane, a lot of radio equipment, especially antennas are installed, leading to concerns about antenna pattern distortion caused by the plane body and inter-antenna isolation. COMAC, Shanghai Aircraft Design and Research Institute continues selecting FEKO to improve the EMC performance in the developmental phase of the multiple aircraft models C919 and ARJ21.

Top Use Cases: CCC and CSC

Presentation introducing a few of the top use cases for the crash and safety software, Crash Cad Calculate and Cross Section Creator.

Top Use Cases: AlphaCell

Presentation introducing a few of the top use cases for the NVH software, AlphaCell.

Top Use Cases: CADdoctor

Presentation introducing a few of the top use cases for the geometry cleaning software, CADdoctor.

Top Use Cases: KTex Family

Presentation introducing a few of the top use cases for the composites software, KTex Family.

Top Use Cases: MADYMO

Presentation introducing a few of the top use cases for the crash and safety software, MADYMO.

Top Use Cases: nanoFluidX

Presentation introducing a few of the top use cases for the CFD software, nanoFluidX.

Top Use Cases: nCode DesignLife

Presentation introducing a few of the top use cases for the durability software, nCode DesignLife.

Ford Battery Group Adopts RADIOSS Cut Methodology

In order to improve the simulation and accuracy of a high fidelity battery CAE model. Ford has turned to the cut methodology available in RADIOSS.

RUAG Space Streamlines Composite Analysis with Improved Data Workflow

RUAG Space combines the power of the Altair HyperWorks Suite with the advanced composite failure analysis methods from ESAComp to improve their efficiency and composite modeling process.

Progressive Failure Analysis on Aircraft Door Surround During Ground Service Equipment Impact

Digimat helps address the changes coming along with the replacement of metallic structures with composite structures.

Digimat and RADIOSS for UD Material Modeling with Anisotropic Progressive Failure

The prediction of CFRP materials in the automotive industry requires simulation of the failure through an anisotropic progressive failure model, provided by Digimat.

VTT optimises industrial valve block for Additive Manufacturing

Reprint of the article published on Metal AM - vol. 2 no. 1 Spring 2016

Thales Alenia Space

Companies from across a wide range of industries are attempting to find the potential impact that additive manufacturing (AM) could have on design and manufacturing processes. During its own efforts to explore AM and its potential for space satellite development programs, Thales Alenia Space Spain wanted to conduct a research project to see how optimization techniques could be used in conjunction with new manufacturing technology. The primary objective of the study was to use design optimization techniques to reduce the thermal compliance of a satellite’s aluminium filter bracket, while also optimizing the component for weight and readying the final design for the additive manufacturing process.

Using Flux Coupled to AMESim to Design a Fuel Injection System

Presentation from the 2013 Flux Conference

Advanced Composite Material Calculations at eStress Using HyperWorks, LAP and CoDA

eStress' needed to develop a practical and generalized approach to assess the behavior of curved composite beams under corner unfolding loading for design sizing. This process shows how HyperWorks, LAP and CoDA worked together to achieve this.

Optimized Design for 3D Printed Valve Block Sheds Weight, Size and Gains Improved Performance

Not every component or product is suitable for 3D printing, depending on its size, form and design as well as the quantity needed. A valve block is very suitable for 3D printing and has a high potential for improvement in weight, performance, and design freedom when additively manufactured.

Composite Rotor Blade Analysis using Altair HyperWorks

As part of a senior design project – the design and analysis of a coaxial rotor craft – Christopher Van Damme, at the time of the project senior undergraduate student within the department of Engineering Mechanics at the University of Wisconsin-Madison, had to analyze a composite made helicopter rotor blade. In his analysis he had to employ Computer-Aided Engineering tools to cover the required studies regarding static, modal, frequency response, and dynamic analysis of the rotor.

Getting it right the First Time; how FE-Simulation with RADIOSS supports Sigma Connectivity in Streamlining the Development Process

Simulation is extensively used in the early development phases at the Sigma Group, where about 10-15 engineers are working with different types of simulations.

Structural Design of Concrete Shells in Seismic Areas Using HyperWorks

Challenge: Structural optimization to design expressive structures that can safely be employed in seismic areas Altair Solution: Investigate shell structures

Application of HyperWorks to Develop Human Body Models to Assess Injury Potential for Vulnerable Populations in Vehicle Crashes

The effects of obesity on occupant responses in frontal collisions were investigated using the UMTRI whole-body human finite element models. A modeling approach was developed and applied that allowed for rapid change of a baseline human body model into geometries representing adults with different BMIs without the need for re-meshing the models.

The SKA Radio Telescope: a Global Project for a Better Understanding of the Universe

Challenging Einstein’s seminal theory of relativity to the limits, how the very first stars and galaxies formed just after the Big Bang, the study of dark energy and the vast magnetic fields in the cosmos, and the age old question “Are we alone in the Universe?” These are some of the key scientific goals of the Square Kilometer Array (SKA) project, led by the SKA Organization from Jodrell Bank Observatory in the UK, supported by 11 member countries.

SOGECLAIR Aerospace Employs HyperWorks to Optimize Additively Manufactured Aircraft Components: Topology optimization of a large engine pylon structure

To find new development and manufacturing approach to reduce weight while ensuring safety, HyperWorks offers SOGECLAIR Aerospace an innovative, streamlined development environment with more design freedom, faster development cycles, and lower costs. A CAE-driven design process combining topology optimization using OptiStruct and Additive Layer Manufacturing (ALM).

Student Racing Team from Politecnico di Torino uses HyperWorks to Improve Weight, Manufacturability, and the Performance of Race Car

The students used HyperWorks which resulted in a weight reduction of 30% for those parts that were taken under consideration.

Student Team H2polit0 of Politecnico of Torino Applied HyperWorks to Reduce Vehicle Weight and Fuel Consumption on Shell Eco Marathon Europe Competition

Student teams from around the world participate in the Shell Eco-marathon (SEM), a unique low energy consumption competition for student teams. Within the competition the teams strive to design, build and drive the most energy-efficient car. In three annual events in Asia, Americas, and Europe, student teams compete on the track to see who goes furthest on the least amount of fuel. The competition evaluates different aspects of the car, the most important of which is of course the energy consumption: the less energy the car needs, the better it will rank.

Design and Optimization of a High Performance C-Class Catamaran with HyperWorks

Born in 1961, based on a challenge between Great Britain and the United States about who builds the fastest catamarans, the ‘C-Class’ has been the driver of many innovations in the world of multihull sailing.

Climbing the Winner’s Podium with HyperWorks

HyperWorks allows for the option to increase the stiffness of the wheel shell through the use of OptiStruct. By applying HyperWorks to their composite design and development process the team was able to increase the stiffness of the chosen components by 10 percent while learning how to do a structural layout of carbon fiber composites.

ThyssenKrupp Elevator

ThyssenKrupp Elevator wanted to explore ways to ensure that an innovative, ropeless elevator system design was as lightweight as possible in order to maximize the loading capacity of the cabins. Altair ProductDesign was selected to explore methods and materials that could help to minimize the weight of the design due to the company’s experience in removing mass from products in the automotive and aerospace sectors.

Using HyperWorks to Develop Human Body Models for Vehicle Crash Simulation

Wake Forest Baptist Medical Center is a leading research university in biomedical sciences and bioengineering that provides students and faculty with outstanding opportunities for personal and professional growth.

Solid Hex Meshing the Human Lumbar Spine

Computational modeling and simulation, which uses computer-based mathematical techniques, is on the verge of revolutionizing the field of medical devices. Modeling techniques allow computer models to eliminate bad ideas and refine the good ones long before they leave the drawing board.

Sharma & Associates

Sharma & Associates (SA), a Chicago-based consulting firm that is focused on providing engineering solutions to the railroad industry, led the effort. Since 1995, SA have delivered safe, effective and efficient solutions to its customers, which include the Federal Railroad Administration (FRA), the Association of American Railroads (AAR), railroads and transit agencies, rail car builders and rail car component manufacturers. The objective of the Altair ProductDesign team effort was to develop an ‘Engineer Protection System (EPS)’ that can protect train crew in frontal collisions (a common mode of train collision) from secondary impact injuries.

Minimising Mass and Increasing Durability of a Vehicle Suspension System Using OptiStruct

Gestamp selected Altair to develop a set of custom tools within HyperWorks, eliminating the need for an initial 'trial and error' design loop while reducing mass and increasing durability of a rear twist beam suspension system. The company achieved a reduction in lead time while producing competitive low cost, low mass RTB designs.

HyperMesh and Custom Export Template Streamline CFD Analysis in Research Projects at Arizona State University

Integrative Simulations & Computational Fluids Lab researchers from SEMTE (School for Engineering of Matter Transport and Energy) at the Arizona State University (ASU) wanted to use the commercial code HyperMesh as a general preprocessor to mesh complex geometries for use with the spectral element CFD code Nek5000. The challenge was to benefit from the rich functionality of existing meshing tools such as HyperMesh while using the Nek5000 code, since this CFD code requires 3D hexahedral elements. SEMTE researchers set up a project to develop a converter tool with which a HyperMesh mesh could be exported into a format the Nek5000 code could work with. With this export template the overall process is now much more user-friendly and less error-prone. The mesh is generated in HyperMesh and the export template organizes all the data and sorts it so it can be imported in the proper formats into the Nek5000 user template.

U-Shin Improves Product Design of Automotive Parts with Altair CAE Solutions

U-Shin is a global automotive part supplier, specializing in the development and production of automotive system appliances and mechatronics products as well as on the research of element technologies. Safety, reliability, adaptability, quality, eco-friendliness, are among the major concerns of the company.

NovaFlow&Solid CV Use Case: Heavy Machinery

NovaFlow&Solid CV (NFS), from NovaCast, is a casting process simulation system that can simulate virtually any type of casting. NFS simulates casting components used in the heavy machinery industry, regardless of if they are small or big, simple or complex.

StressCheck Use Case: Aerospace

Aerospace application example of how to apply StressCheck to compute maximum first principal stress in the area of airplane wing attachments.

AlphaCell for Aerospace: Design, Optimize and Understand Your NVH Treatment

For optimizing the sound packages in project early stages, the Transfer Matrix Method (TMM) as implemented in AlphaCell is a reliable method.

Intel Solution Brief: Maximize Performance and Scalability with RADIOSS on Intel® Xeon®

This paper summarizes the findings of a benchmark project to evaluate the performance and scalability of RADIOSS on Intel® Xeon® Processor E7 v2 family-based platforms.

Safety Comes First – Development of a Maxi-Cosi Child Seat Using a CAE-Driven Design Process

When developing a new child seat, safety is paramount. Dorel Juvenile, market leader in child safety in cars, was confronted with the task to develop a new child seat - the Maxi-Cosi 2wayPearl. To investigate and analyze the best feasible design, considering the occurring forces during an accident, Dorel Juvenile turned to Code Product Solutions, an engineering service provider that supports their customers in the development and optimization of products, using computer-aided engineering (CAE) tools. Within the development process, Code Product Solutions engineers employed the Altair HyperWorks CAE suite utilizing RADIOSS® for crash simulation, OptiStruct® for the layout of highly loaded plastic parts that comprise the reclining system, HyperMesh® for pre-processing tasks, and HyperCrash® and HyperView® during post-processing.

Improving Rudder Shock Loading Following a Nearby Blast Event Using RADIOSS

Engineers in the Marine, Shipbuilding, and Offshore industries face many design challenges including physical space constraints, extreme weather conditions, deep water and remote locations. These constraints create an extreme environment for the engineer to develop a sound, reliable and safe operating platform.

FIAT

FIAT chose Altair ProductDesign as a partner to perform a pilot project to investigate squeak and rattle. The project focused on studying issues on the FIAT UNO, a vehicle made exclusively for the South American market. Altair ProductDesign suggested that FIAT implement Altair’s ‘Squeak & Rattle Director’ (SNRD), a comprehensive set of services and software automations that rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle in assemblies. With customization from the Altair ProductDesign team, the solution provides a semi-automated approach to determine relative component displacements in the time domain that can lead to undesired noise. A dedicated four day workshop facilitated a fast ramp-up of the NVH team’s knowledge of the SNRD and helped Altair to identify FIAT’s specific design process that the solution could be tailored to.

Baker Hughes Drills 60% off Product Development Time With HyperWorks-Driven Simulation

One of the world’s leading suppliers of oilfield services, products, technology and systems, Baker Hughes operates globally with nearly 59,000 employees. The company, headquartered in Houston, Texas, recently recorded $21.4 billion in annual revenue from sales of both services and highly innovative products for the world’s oil and natural gas industry.

Fluid - Structure Interaction Analysis and Optimization of an Automotive Component

This paper discusses the behavior of a flexible flap at the rear end of a generic car model under aerodynamic loads. A strong bidirectional coupling between the flap’s deflection and the flow field exists which requires this system to be simulated in a coupled fluid-structure manner.

Application of HyperWorks for Collaborative/Global Computer-Aided Engineering And Design Instruction at Brigham Young University

For a recent ME 471 class, a team of five students re-engineered the chassis/suspension platform for a 1969 Chevrolet Camero. At the conclusion of the project, the team presented a comprehensive review of their re-design vehicle to a panel of PACE program representatives and partners. Key to arriving at an efficient design was the early application of Altair topology optimization to the chassis, suspension, and wheel design of the vehicle. Altair HyperMesh was applied to generate finite element models that formed the basis for the topology optimization studies. The team results showed that  The chassis mass was reduced by 34% through the application of topology optimization. The suspension control arm mass was reduced by 28%. The team was able to apply the Altair HyperWorks simulation tools in a seamless manner with the Catia-based CAD data that was generated for the vehicle re-design.

3D Printing for Innovative Mold Making Combined with Simulation Driven Design Inspiration Push the Limits for High Performance Castings

Altair, Click2Cast, HBM nCode, and voxeljet present a technology demonstration that stands out with dramatic performance improvements and the solid potential for serial manufacturing and mass production. Bringing design optimization, fatigue analysis, casting, and 3D printing together addresses the challenges of lightweight design and enables the creation of an innovative design and manufacturing process that enhances performance and efficiency.

Indian Engineering Institute CoEP Establishes CAE Optimization Center Employing Altair HyperWorks

This success story illustrates how a reputed engineering institute of national acclaim has set-up a CAE - Optimization Lab, equipped with Altair HyperWorks CAE tools, to expose their students to the latest technologies in product design, analysis, and optimization. Within the range of the CAE - Optimization Lab, CoEP has launched various courses to impart knowledge on Altair HyperWorks. This CoEP initiative bridges the gap between industry expectations and needs and the knowledge that graduating students possess. Being trained on advanced and contemporary technologies such as the HyperWorks suite has opened new opportunities for students to embark their career, has improved the national ranking of the college due to investing in a modern and robust infrastructure, and also has benefitted the industry by creating a talent pool of well-trained manpower, available to work on breakthrough engineering initiatives.

Project Team Builder for the Aerospace and Defense Industry

Every year numerous defense projects are finished late, over budget or are outright cancelled. Project managers and systems engineers lack the tools and techniques to support collaborative decisions making. See how SandboxModel can help.

MADYMO Aerospace Use Case

MADYMO from TASS International delivers multibody occupant models in a finite element environment to analyze and improve seat layout and seat design with the aim to maximize passenger capacity without the need for costly testing. Each new seat layout requires demonstration to prove no head impact conditions exist or that any head impacts result in HIC values below 1000, traditionally accomplished through testing. Testing for head impact conditions for each new seat layout is costly and is often significantly reduced by using MADYMO in support of or in lieu of testing.

F.tech R&D North America

F.tech R&D North America utilizes HyperView to investigate test results, using the data to inform decisions on methods to improve designs. This data will often be used to create reports and presentations during the development process, using images and animations generated by HyperView to illustrate particular areas of a component where additional work may be required. However, exporting these assets is a highly manual process of loading in results, positioning the model and taking screenshots. To allow its engineers to concentrate efforts on exploring and interpreting the results, F.tech R&D North America wanted a way of automating this process.

Haier Redesigns Air Conditioners and Packaging with Altair HyperWorks to Eliminate Drop Damage

Haier Group is one of the world’s largest manufacturers of home appliances and consumer electronics. The company is the leader of its industry in China, where it is headquartered.<br><br> Haier ships its products all across the globe and in more than 100 countries, so well designed product packaging is crucial to the company’s ability to deliver products without damage to even the farthest destinations.<br><br> Download the Case study to see how Altair was able to reduce costs of physical testing and eliminate drop damage using simulated drop testing with HyperWorks.

Re-Loc

Re-Loc is a UK based company that developed a new product to help to accelerate the process of positioning metal reinforcement bars inside concrete bricks. The Re-Loc product is a clip that fits tightly inside the brick’s cavity and attaches to the bar, holding it securely in place as the cavity is fillled with concrete. The team had already developed a rough design and proved that it could perform its intended job, but problems arose when it came to the high manufacturing cost of the product. Re-Loc approached Altair ProductDesign to explore ways of reducing material use and cost from the part and to bring the design to a production level.

Establishing Simulation-Driven Design at Scania

Mikael Thellner from Scania Trucks talks about improved design processes thanks to solidThinking Inspire. Designers can evaluate their products in earlier stages due to the ability to do analyses themselves.

ESAComp for Automotive Use Case

ESAComp is software for analysis and design of composites. Its scope ranges from conceptual and preliminary design of layered composite structures to advanced analyses that are applicable to the final verification of a design.

NASA Develops Wireless Sensors to Detect Lightning Strike Damage to Composite Aircraft

Computational electromagnetic software enables a team of researchers at NASA’s Langley Research Center to develop wireless resonant sensors that can measure and mitigate lightning strike damage to composite aircraft. <br><br> By Beverly A. Beckert<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

Simulation Powers Development of Professional Power Tools

CAE is a core element in developing high-end, long-lasting professional power tools at DeWalt, a Stanley Black & Decker brand. <br><br> By Evelyn Gebhardt<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

Chiller Unit Keeps Joint Strike Fighter Pilots Cool

A model-based embedded development system enables AMETEK to design, simulate, create firmware for and validate a chiller unit control system. <br><br> By Beverly A. Beckert<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

Optimization Technology: Leveraging a Solid Foundation to Innovate Better Products

Steady improvements in the OptiStruct solver platform over 20 years have enabled users to tackle increasingly complex design challenges. Now, OptiStruct in combination with 3D printing helps to achieve more efficient structural designs. <br><br> By Uwe Schramm<br> <i>Concept To Reality</i> Winter/ Spring 2015 <br> <a href="http://www.altair.com/MagazineFreeSubscription.aspx" target="_blank">Subscribe to C2R Magazine</a><br><br>

OptiStruct Plays a Key Role in the Air Wing Design for a Multi-Disciplinary, Collaborative University Capstone Design Project

The Georgia Tech Institute of Technology (Georgia Tech) took the lead in collaborating with five Universities to develop a senior-level capstone design course that would give engineering students collaborative design experience using state-of the art computational tools. The multi-disciplinary course was completed over two semesters. Students, under the direction of University professors and industrial mentors, completed a fixed-wing aircraft design.

Euro-Pro Embraces Simulation-Driven Design with Altair HyperWorks

Euro-Pro, maker of Ninja blenders and Shark vacuums, has embraced simulation-driven design to reduce physical tests and improve product performance and durability. HyperWorks solvers (OptiStruct, RADIOSS and AcuSolve) are used across the board via Altair’s HPC cloud infrastructure

CAEfatigue VIBRATION for Aerospace

One page flyer pointing out CAEfatigue VIBRATION's specific features, workflows and examples for the aerospace industry.

Scania

Scania uses Inspire to speed up its design and development process to produce lighter and more efficient components.

Monash Motorsport takes advantage of optimization and additive manufacturing technologies and wins again!

Since their first Australian SAE Student Racing competition in 2000, the Monash Motorsport team has steadily improved the performance of their race car. Recently the students discovered the benefits of combining Altair‘s OptiStruct optimization technology and 3D printing. Based on an initial prototype rear hub design from the 2013 car, the team proceeded to pursue titanium front hubs and uprights to decrease the car’s unsprung mass. This was a tough challenge, since the former design was already made of lightweight aluminum. To tackle this, Monash Motorsport employed Altair’s optimization technology OptiStruct to design and optimize a titanium upright, which was then produced using additive manufacturing technology from CSIRO. As a result, the students were able to reduce the component’s weight by a further 30 percent whilst maintaining the component stiffness and reducing the development time and costs.

ChassisSim Case Study: Tuning Dampers on a Road Car

This case study focuses on applying ChassisSim to tune dampers of a road car - particularly by using the lap time simulation to tune the dampers of a vintage Porsche 911 car and how the shaker rig toolbox was used to tune the dampers on a GT car.

ChassisSim Case Study: Tuning a Road Car to Run the Nurburgring in Under 7 Minutes

This study demonstrates how ChassisSim allows users to play out all "what ifs" to help predict what might happen in a given situation during a race. It will also show how ChassisSim can be just as applicable to road cars as it is to race cars.

ChassisSim Case Study: Suspension Geometry Design

This case study describes a method to short circuit the suspension geometry design of a vehicle using the motorsport simulation package ChassisSim.

In Search of the Perfect Snowmobile Design

Polaris uses optimization software to achieve lightweight designed and recede time to market. Learn how in this reprint of an article published on the January 2015 issue of Desktop Engineering magazine.

MAHLE

Analysis of MAHLE's automotive components and systems creates a huge amount of simulation data which is used to generate project reports. This reporting process can be a slow, manual process that ties up a great deal of the engineering team’s time that could be better spent investigating the results. The company wanted to explore ways of streamlining its simulation results reporting process when developing new pistons and connecting rods.

Page: 1  2   3   4  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.